4 resultados para litter mixture

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed two litter decomposition experiments using nearly-senesced red mangrove (Rhizophora mangle L.) leaves collected from an Everglades dwarf mangrove wetland to understand the short-term (3 weeks) and long-term (1 year) changes in mass, as well as C-, N-, and P-content of decomposing leaf litter. We expected that leaves decomposing in this oligotrophic environment would be short-term sources of C, N, and P, but potential long-term sinks for N and P. In May 1998, we conducted a 3-week leaching experiment, incubating fresh, individual leaves in seawater for up to 21 days. From May 1997 to May 1998, leaf litter in mesh bags decomposed on the forest floor at two dwarf mangrove sites. Leaching accounted for about 33% loss of dry mass from R. mangle leaves after 3 weeks. Leaching losses were rapid, peaking by day 2, and large, with leachate concentrations of total organic carbon (TOC) and total phosphorus (TP) increasing by more than an order of magnitude after 3 weeks. Mean leaf C:N increased from 105 to 115 and N:P increased from a mean of 74 to 95 after 21 days, reflecting the relatively large leaching losses of N and P. Loss of mass in the litterbags leveled off after 4 months, with roughly 60%dry mass remaining (DMR) after nearly 1 year of decomposition. The mass of carbon in each litterbag declined significantly after 361 days, but the mass of nitrogen and phosphorus doubled, indicating long-term accumulation of these constituents into the detritus. Subsequently, the leaf C:N ratio dropped significantly from 90 to 34 after 361 days. Following an initial 44-day increase, leaf N:P decreased from 222 to 144, reflecting high accumulation of P relative to N. A review of several estuarine macrophyte decomposition studies reveals a trend in nitrogen accumulation through time regardless of site, but suggests no clear pattern for C and P. We believe that the increase in litter P observed in this study was indicative of the P-limited status of the greater Everglades ecosystem and that decomposing mangrove litter may represent a substantial phosphorus pool in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of nutrient availability and litter quality on litter decomposition were measured in two oligotrophic phosphorus (P)-limited Florida Everglades esturies, United States. The two estuaries differ, in that one (Shark River estuary) is directly connected to the Gulf of Mexico and receives marine P, while the other (Taylor Slough estuary) does not receive marine P because Florida Bay separates it from the Gulf of Mexico. Decomposition of three macrophytes.Cladium jamaicense, Eleochaaris spp., andJuncus roemerianus, was studied using a litter bag technique over 18 mo. Litter was exposed to three treatments: soil surface+macroinvertebrates (=macro), soil surface without macroinvertebrates (=wet), and above the soil and water (=aerial). The third treatment replicated the decomposition of standing dead leaves. Decomposition rates showed that litter exposed to the wet and macro treatments decomposed significantly faster than the aerial treatment, where atmospheric deposition was the only source of nutrients. Macroinvertebrates had no influence on litter decompostion rates.C. jamaicense decomposed faster at sites, with higher P, andEleocharis spp. decomposed significantly faster at sites with higher nitrogen (N). Initial tissue C:N and C:P molar ratios revealed that the nutrient quality of litter of bothEleocharis spp. andJ. roemerianus was higher thanC. jamaicense, but onlyEleocharis spp. decomposed faster thanC. jamaicense. C. jamaicense litter tended to immobilize P, whileEleocharis spp. litter showed net remineralization of N and P. A comparison with other estuarine and wetland systems revealed the dependence of litter decomposition on nutrient availability and litter quality. The results from this experiment suggest that Everglades restoration may have an important effect on key ecosystem processes in the estuarine ecotone of this landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.