6 resultados para lithium grease

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning and memory in adult females decline during menopause and estrogen replacement therapy is commonly prescribed during menopause. Post-menopausal women tend to suffer from depression and are prescribed antidepressants – in addition to hormone therapy. Estrogen replacement therapy is a topic that engenders debate since several studies contradict its efficacy as a palliative therapy for cognitive decline and neurodegenerative diseases. Signaling transduction pathways can alter brain cell activity, survival, and morphology by facilitating transcription factor DNA binding and protein production. The steroidal hormone estrogen and the anti-depressant drug lithium interact through these signaling transduction pathways facilitating transcription factor activation. The paucity of data on how combined hormones and antidepressants interact in regulating gene expression led me to hypothesize that in primary mixed brain cell cultures, combined 17β-estradiol (E2) and lithium chloride (LiCl) (E2/LiCl) will alter genetic expression of markers involved in synaptic plasticity and neuroprotection. Results from these studies indicated that a 48 h treatment of E2/LiCl reduced glutamate receptor subunit genetic expression, but increased neurotrophic factor and estrogen receptor genetic expression. Combined treatment also failed to protect brain cell cultures from glutamate excitotoxicity. If lithium facilitates protein signaling pathways mediated by estrogen, can lithium alone serve as a palliative treatment for post-menopause? This question led me to hypothesize that in estrogen-deficient mice, lithium alone will increase episodic memory (tested via object recognition), and enhance expression in the brain of factors involved in anti-apoptosis, learning and memory. I used bilaterally ovariectomized (bOVX) C57BL/6J mice treated with LiCl for one month. Results indicated that LiCl-treated bOVX mice increased performance in object recognition compared with non-treated bOVX. Increased performance in LiCl-treated bOVX mice coincided with augmented genetic and protein expression in the brain. Understanding the molecular pathways of estrogen will assist in identifying a palliative therapy for menopause-related dementia, and lithium may serve this purpose by acting as a selective estrogen-mediated signaling modulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in the electric & hybrid electric vehicles and rapid developments in the electronic devices have increased the demand for high power and high energy density lithium ion batteries. Graphite (theoretical specific capacity: 372 mAh/g) used in commercial anodes cannot meet these demands. Amorphous SnO2 anodes (theoretical specific capacity: 781 mAh/g) have been proposed as alternative anode materials. But these materials have poor conductivity, undergo a large volume change during charging and discharging, large irreversible capacity loss leading to poor cycle performances. To solve the issues related to SnO2 anodes, we propose to synthesize porous SnO2 composites using electrostatic spray deposition technique. First, porous SnO2/CNT composites were fabricated and the effects of the deposition temperature (200, 250, 300 °C) & CNT content (10, 20, 30, 40 wt %) on the electrochemical performance of the anodes were studied. Compared to pure SnO2 and pure CNT, the composite materials as anodes showed better discharge capacity and cyclability. 30 wt% CNT content and 250 °C deposition temperature were found to be the optimal conditions with regard to energy capacity whereas the sample with 20% CNT deposited at 250 °C exhibited good capacity retention. This can be ascribed to the porous nature of the anodes and the improvement in the conductivity by the addition of CNT. Electrochemical impedance spectroscopy studies were carried out to study in detail the change in the surface film resistance with cycling. By fitting EIS data to an equivalent circuit model, the values of the circuit components, which represent surface film resistance, were obtained. The higher the CNT content in the composite, lower the change in surface film resistance at certain voltage upon cycling. The surface resistance increased with the depth of discharge and decreased slightly at fully lithiated state. Graphene was also added to improve the performance of pure SnO2 anodes. The composites heated at 280 °C showed better energy capacity and energy density. The specific capacities of as deposited and post heat-treated samples were 534 and 737 mAh/g after 70 cycles. At the 70th cycle, the energy density of the composites at 195 °C and 280 °C were 1240 and 1760 Wh/kg, respectively, which are much higher than the commercially used graphite electrodes (37.2–74.4 Wh/kg). Both SnO2/CNTand SnO2/grapheme based composites with improved energy densities and capacities than pure SnO2 can make a significant impact on the development of new batteries for electric vehicles and portable electronics applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the "hydrogen economy" faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH 3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. ^ Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. ^ Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn2 1 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning and memory in adult females decline during menopause and estrogen replacement therapy is commonly prescribed during menopause. Post-menopausal women tend to suffer from depression and are prescribed antidepressants – in addition to hormone therapy. Estrogen replacement therapy is a topic that engenders debate since several studies contradict its efficacy as a palliative therapy for cognitive decline and neurodegenerative diseases. Signaling transduction pathways can alter brain cell activity, survival, and morphology by facilitating transcription factor DNA binding and protein production. The steroidal hormone estrogen and the anti-depressant drug lithium interact through these signaling transduction pathways facilitating transcription factor activation. The paucity of data on how combined hormones and antidepressants interact in regulating gene expression led me to hypothesize that in primary mixed brain cell cultures, combined 17beta-estradiol (E2) and lithium chloride (LiCl) (E2/LiCl) will alter genetic expression of markers involved in synaptic plasticity and neuroprotection. Results from these studies indicated that a 48 h treatment of E2/LiCl reduced glutamate receptor subunit genetic expression, but increased neurotrophic factor and estrogen receptor genetic expression. Combined treatment also failed to protect brain cell cultures from glutamate excitotoxicity. If lithium facilitates protein signaling pathways mediated by estrogen, can lithium alone serve as a palliative treatment for post-menopause? This question led me to hypothesize that in estrogen-deficient mice, lithium alone will increase episodic memory (tested via object recognition), and enhance expression in the brain of factors involved in anti-apoptosis, learning and memory. I used bilaterally ovariectomized (bOVX) C57BL/6J mice treated with LiCl for one month. Results indicated that LiCl-treated bOVX mice increased performance in object recognition compared with non-treated bOVX. Increased performance in LiCl-treated bOVX mice coincided with augmented genetic and protein expression in the brain. Understanding the molecular pathways of estrogen will assist in identifying a palliative therapy for menopause-related dementia, and lithium may serve this purpose by acting as a selective estrogen-mediated signaling modulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the “hydrogen economy” faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn21 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.