2 resultados para leaf weight

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The developmental responses of plants to shade underneath foliage are influenced by reductions in irradiance and shifts in spectral quality (characterized by reductions in the quantum ratio of red to far-red wavelengths, R:FR). Previous research on the influence of shadelight on leaf development has neglected the reductions in R:FR characteristic of foliage shade, and these studies have almost certainly underestimated the extent and array of developmental responses to foliage shade. We have studied the effects of reduced irradiance and R:FR on the leaf development of papaya (Carica papaya L., Caricaceae). Using experimental shadehouses, replicates of plants grown in high light conditions (0.20 of sunlight and R:FR = 0.90) were compared to low light conditions (0.02 of sunlight) with either the spectral quality of sunlight (R:FR = 0.99) or of foliage shade (F:FR = 0.26). Although many characteristics, such as leaf thickness, specific leaf weight, stomatal density, palisade parenchyma cell shape, and the ratio of mesophyll air surface/leaf surface were affected by reductions in irradiance, reduced R:FR contributed to further changes. Some characters, such as reduced chlorophyll a/b ratios, reduced lobing, and greater internode length, were affected primarily by low R:FR. The reduced R:FR of foliage shade, presumably affecting phytochrome equilibrium, strongly influences the morphology and anatomy of papaya leaves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both light quantity and quality affect the development and autoecology of plants under shade conditions, as in the understorey of tropical forests. However, little research has been directed towards the relative contributions of lowered photosynthetic photon flux density (PPFD) versus altered spectral distributions (as indicated by quantum ratios of 660 to 730 nm, or R:FR) of radiation underneath vegetation canopies. A method for constructing shade enclosures to study the contribution of these two variables is described. Three tropical leguminous vine species (Abrus precatorius L., Caesalpinia bondicela Fleming and Mucuna pruriens (L.) DC.) were grown in two shade enclosures with 3-4% of solar PPFD with either the R:FR of sunlight (1.10) or foliage shade (0.33), and compared to plants grown in sunlight. Most species treated with low R:FR differed from those treated with high R:FR in (1) percent allocation to dry leaf weight, (2) internode length, (3) dry stem weight/length, (4) specific leaf weight, (5) leaf size, and (6) chlorophyll a/b ratios. However, these plants did not differ in chlorophyll content per leaf dry weight or area. In most cases the effects of low R:FR and PPFD were additional to those of high R:FR and low PPFD. Growth patterns varied among the three species, but both low PPFD and diminished R:FR were important cues in their developmental responses to light environments. This shadehouse system should be useful in studying the effects of light on the developmental ecology of other tropical forest plants.