11 resultados para latent growth curve modeling

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated group processes as potential mediators or moderators of positive development outcome and negative reduction intervention response by evaluating the utility of a group measure modified from a widely known measure of group impact found in the group therapy research literature. Four group processes were of primary interest, (1) Group Impact; (2) Facilitator Impact; (3) Skills Impact; and (4) Exploration Impact as assessed by the Session Evaluation Form (SEF). Outcome measures included the Personally Expressive Activities Questionnaire (PEAQ), Erikson Psycho-Social Index (EPSI) and the Zill Behavior Items, Behavior Problem Index (ZBI (BPI)). The sample consisted of 121 multi-ethnic participants drawn from four alternative high schools from the Miami-Dade County Public School system. Utilizing a Latent Growth Curve Modeling approach with Structural Equation Modeling (SEM) statistics, preliminary analyses were conducted to evaluate the psychometric properties of the SEF and its role in the mediation or moderation of intervention outcome. Preliminary results revealed evidence of a single higher order factor representing a "General" global reaction, which was hypothesized to be a "Positive Group Climate" construct to the program as opposed to the four distinct group processes that were initially hypothesized to affect outcomes. The results of the evaluation of the mediation or moderation role of intervention outcome of the single "General" global latent factor ("Positive Group Climate" construct) did not significantly predict treatment response on any of the outcome variables. Nevertheless, the evidence of an underlying "General" global latent factor ("Positive Group Climate" construct) has important future directions for research on positive youth development programs as well as in group therapy research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical rainforests account for more than a third of global net primary production and contain more than half of the global forest carbon. Though these forests are a disproportionately important component of the global carbon cycle, the relationship between rainforest productivity and climate remains poorly understood. Understanding the link between current climate and rainforest tree stem diameter increment, a major constituent of forest productivity, will be crucial to efforts at modeling future climate and rainforest response to climate change. This work reports the physiological and stem growth responses to micrometeorological and phenological states of ten species of canopy trees in a Costa Rican wet tropical forest at sub-annual time intervals. I measured tree growth using band dendrometers and estimated leaf and reproductive phenological states monthly. Electronic data loggers recorded xylem sap flow (an indicator of photosynthetic rate) and weather at half-hour intervals. An analysis of xylem sap flow showed that physiological responses were independent of species, which allowed me to construct a general model of weather driven sap flow rates. This model predicted more than eighty percent of climate driven sap flow variation. Leaf phenology influenced growth in three of the ten species, with two of these species showing a link between leaf phenology and weather. A combination of rainfall, air temperature, and irradiance likely provided the cues that triggered leaf drop in Dipteryx panamensis and Lecythis ampla. Combining the results of the sap flow model, growth, and the climate measures showed tree growth was correlated to climate, though the majority of growth variation remained unexplained. Low variance in the environmental variables and growth rates likely contributed to the large amount of unexplained variation. A simple model that included previous growth increment and three meteorological variables explained from four to nearly fifty percent of the growth variation. Significant growth carryover existed in six of the ten species, and rainfall was positively correlated to growth in eight of the ten species. Minimum nighttime temperature was also correlated to higher growth rates in five of the species and irradiance in two species. These results indicate that tropical rainforest tree trunks could act as carbon sinks if future climate becomes wetter and slightly warmer. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research sought to understand the role that differentially assessed lands (lands in the United States given tax breaks in return for their guarantee to remain in agriculture) play in influencing urban growth. Our method was to calibrate the SLEUTH urban growth model under two different conditions. The first used an excluded layer that ignored such lands, effectively rendering them available for development. The second treated those lands as totally excluded from development. Our hypothesis was that excluding those lands would yield better metrics of fit with past data. Our results validate our hypothesis since two different metrics that evaluate goodness of fit both yielded higher values when differentially assessed lands are treated as excluded. This suggests that, at least in our study area, differential assessment, which protects farm and ranch lands for tenuous periods of time, has indeed allowed farmland to resist urban development. Including differentially assessed lands also yielded very different calibrated coefficients of growth as the model tried to account for the same growth patterns over two very different excluded areas. Excluded layer design can greatly affect model behavior. Since differentially assessed lands are quite common through the United States and are often ignored in urban growth modeling, the findings of this research can assist other urban growth modelers in designing excluded layers that result in more accurate model calibration and thus forecasting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

• Premise of the study: Species in the aquatic genus Nymphoides have inflorescences that appear to arise from the petioles of floating leaves. The inflorescence-floating leaf complex can produce vegetative propagules and/or additional inflorescences and leaves. We analyzed the morphology of N. aquatica to determine how this complex relates to whole plant architecture and whether whole plant growth is sympodial or monopodial. • Methods: We used dissections, measurements, and microscopic observations of field-collected plants and plants cultivated for 2 years in outdoor tanks in south Florida, USA. • Key results: Nymphoides aquatica had a submerged plagiotropic rhizome that produced floating leaves in an alternate/spiral phyllotaxy. Rhizomes were composed of successive sympodial units that varied in the number of leaves produced before the apex terminated. The basic sympodial unit had a prophyll that subtended a renewal-shoot bud, a short-petioled leaf (SPL) with floating lamina, and an inflorescence; the SPL axillary bud expanded as a vegetative propagule. Plants produced either successive basic sympodial units or expanded sympodia that intercalated long-petioled leaves between the prophyll and the SPL. • Conclusions: Nymphoides aquatica grows sympodially, forming a rhizome composed of successive basic sympodia and expanded sympodial units. Variations on these types of sympodial growth help explain the branching patterns and leaf morphologies described for other Nymphoides species. Monitoring how these two sympodial phases are affected by water depth provides an ecologically meaningful way to assess N. aquatica’s responses to altered hydrology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation analyzes the effects of political and economic institutions on economic development and growth.^ The first essay develops an overlapping-generations political economy model to analyze the incentives of various social groups to finance human capital accumulation through public education expenditures. The contribution of this study to the literature is that it helps explain the observed differences in the economic growth performance of natural resource-abundant countries. The results suggest that the preferred tax rates of the manufacturers on one hand and the political coalition of manufacturers and landowners, on the other hand, are equal to the socially optimal tax rate. However, we show that owners of natural resources prefer an excessively high tax rate, which suppresses aggregate output to a suboptimal level.^ The second essay examines the relationship between the political influence of different social classes and public education spending in panel data estimation. The novel contribution of this paper to the literature is that I proxy the political power and influence of the natural resource owners, manufacturers, and landowners with macroeconomic indicators. The motivation behind this modeling choice is to substantiate the definition of the political power of social classes with economic fundamentals. I use different governance indicators in the estimations to find out how different institutions mediate the overall impact of the political influence of various social classes on public education spending. The results suggest that political stability and absence of violence and rule of law are the important governance indicators.^ The third essay develops a counter argument to Acemoglu et al. (2010) where the thesis is that French institutions and economic reforms fostered economic progress in those German regions invaded by the Napoleonic armies. By providing historical data on urbanization rates used as proxies for economic growth, I demonstrate that similar different rates of economic growth were observed in the regions of France in the post-Napoleonic period as well. The existence of different economic growth rates makes it hard to argue that the differences in economic performance in the German regions that were invaded by the French and those that were spared a similar fate follow from regional differences in economic institutions.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050°C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1μg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. ^ As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. ^ Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050 ˚C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1µg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.