12 resultados para large-eddy simulation
em Digital Commons at Florida International University
Resumo:
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD's unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD's easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
Resumo:
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
Resumo:
The lack of analytical models that can accurately describe large-scale networked systems makes empirical experimentation indispensable for understanding complex behaviors. Research on network testbeds for testing network protocols and distributed services, including physical, emulated, and federated testbeds, has made steady progress. Although the success of these testbeds is undeniable, they fail to provide: 1) scalability, for handling large-scale networks with hundreds or thousands of hosts and routers organized in different scenarios, 2) flexibility, for testing new protocols or applications in diverse settings, and 3) inter-operability, for combining simulated and real network entities in experiments. This dissertation tackles these issues in three different dimensions. First, we present SVEET, a system that enables inter-operability between real and simulated hosts. In order to increase the scalability of networks under study, SVEET enables time-dilated synchronization between real hosts and the discrete-event simulator. Realistic TCP congestion control algorithms are implemented in the simulator to allow seamless interactions between real and simulated hosts. SVEET is validated via extensive experiments and its capabilities are assessed through case studies involving real applications. Second, we present PrimoGENI, a system that allows a distributed discrete-event simulator, running in real-time, to interact with real network entities in a federated environment. PrimoGENI greatly enhances the flexibility of network experiments, through which a great variety of network conditions can be reproduced to examine what-if questions. Furthermore, PrimoGENI performs resource management functions, on behalf of the user, for instantiating network experiments on shared infrastructures. Finally, to further increase the scalability of network testbeds to handle large-scale high-capacity networks, we present a novel symbiotic simulation approach. We present SymbioSim, a testbed for large-scale network experimentation where a high-performance simulation system closely cooperates with an emulation system in a mutually beneficial way. On the one hand, the simulation system benefits from incorporating the traffic metadata from real applications in the emulation system to reproduce the realistic traffic conditions. On the other hand, the emulation system benefits from receiving the continuous updates from the simulation system to calibrate the traffic between real applications. Specific techniques that support the symbiotic approach include: 1) a model downscaling scheme that can significantly reduce the complexity of the large-scale simulation model, resulting in an efficient emulation system for modulating the high-capacity network traffic between real applications; 2) a queuing network model for the downscaled emulation system to accurately represent the network effects of the simulated traffic; and 3) techniques for reducing the synchronization overhead between the simulation and emulation systems.
Resumo:
The lack of analytical models that can accurately describe large-scale networked systems makes empirical experimentation indispensable for understanding complex behaviors. Research on network testbeds for testing network protocols and distributed services, including physical, emulated, and federated testbeds, has made steady progress. Although the success of these testbeds is undeniable, they fail to provide: 1) scalability, for handling large-scale networks with hundreds or thousands of hosts and routers organized in different scenarios, 2) flexibility, for testing new protocols or applications in diverse settings, and 3) inter-operability, for combining simulated and real network entities in experiments. This dissertation tackles these issues in three different dimensions. First, we present SVEET, a system that enables inter-operability between real and simulated hosts. In order to increase the scalability of networks under study, SVEET enables time-dilated synchronization between real hosts and the discrete-event simulator. Realistic TCP congestion control algorithms are implemented in the simulator to allow seamless interactions between real and simulated hosts. SVEET is validated via extensive experiments and its capabilities are assessed through case studies involving real applications. Second, we present PrimoGENI, a system that allows a distributed discrete-event simulator, running in real-time, to interact with real network entities in a federated environment. PrimoGENI greatly enhances the flexibility of network experiments, through which a great variety of network conditions can be reproduced to examine what-if questions. Furthermore, PrimoGENI performs resource management functions, on behalf of the user, for instantiating network experiments on shared infrastructures. Finally, to further increase the scalability of network testbeds to handle large-scale high-capacity networks, we present a novel symbiotic simulation approach. We present SymbioSim, a testbed for large-scale network experimentation where a high-performance simulation system closely cooperates with an emulation system in a mutually beneficial way. On the one hand, the simulation system benefits from incorporating the traffic metadata from real applications in the emulation system to reproduce the realistic traffic conditions. On the other hand, the emulation system benefits from receiving the continuous updates from the simulation system to calibrate the traffic between real applications. Specific techniques that support the symbiotic approach include: 1) a model downscaling scheme that can significantly reduce the complexity of the large-scale simulation model, resulting in an efficient emulation system for modulating the high-capacity network traffic between real applications; 2) a queuing network model for the downscaled emulation system to accurately represent the network effects of the simulated traffic; and 3) techniques for reducing the synchronization overhead between the simulation and emulation systems.
Resumo:
Developing analytical models that can accurately describe behaviors of Internet-scale networks is difficult. This is due, in part, to the heterogeneous structure, immense size and rapidly changing properties of today's networks. The lack of analytical models makes large-scale network simulation an indispensable tool for studying immense networks. However, large-scale network simulation has not been commonly used to study networks of Internet-scale. This can be attributed to three factors: 1) current large-scale network simulators are geared towards simulation research and not network research, 2) the memory required to execute an Internet-scale model is exorbitant, and 3) large-scale network models are difficult to validate. This dissertation tackles each of these problems. ^ First, this work presents a method for automatically enabling real-time interaction, monitoring, and control of large-scale network models. Network researchers need tools that allow them to focus on creating realistic models and conducting experiments. However, this should not increase the complexity of developing a large-scale network simulator. This work presents a systematic approach to separating the concerns of running large-scale network models on parallel computers and the user facing concerns of configuring and interacting with large-scale network models. ^ Second, this work deals with reducing memory consumption of network models. As network models become larger, so does the amount of memory needed to simulate them. This work presents a comprehensive approach to exploiting structural duplications in network models to dramatically reduce the memory required to execute large-scale network experiments. ^ Lastly, this work addresses the issue of validating large-scale simulations by integrating real protocols and applications into the simulation. With an emulation extension, a network simulator operating in real-time can run together with real-world distributed applications and services. As such, real-time network simulation not only alleviates the burden of developing separate models for applications in simulation, but as real systems are included in the network model, it also increases the confidence level of network simulation. This work presents a scalable and flexible framework to integrate real-world applications with real-time simulation.^
Resumo:
Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.
Resumo:
Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.
Resumo:
The purpose of this investigation was to develop new techniques to generate segmental assessments of body composition based on Segmental Bioelectrical Impedance Analysis (SBIA). An equally important consideration was the design, simulation, development, and the software and hardware integration of the SBIA system. This integration was carried out with a Very Large Scale Integration (VLSI) Field Programmable Gate Array (FPGA) microcontroller that analyzed the measurements obtained from segments of the body, and provided full body and segmental Fat Free Mass (FFM) and Fat Mass (FM) percentages. Also, the issues related to the estimate of the body's composition in persons with spinal cord injury (SCI) were addressed and investigated. This investigation demonstrated that the SBIA methodology provided accurate segmental body composition measurements. Disabled individuals are expected to benefit from these SBIA evaluations, as they are non-invasive methods, suitable for paralyzed individuals. The SBIA VLSI system may replace bulky, non flexible electronic modules attached to human bodies. ^
Resumo:
With the exponential increasing demands and uses of GIS data visualization system, such as urban planning, environment and climate change monitoring, weather simulation, hydrographic gauge and so forth, the geospatial vector and raster data visualization research, application and technology has become prevalent. However, we observe that current web GIS techniques are merely suitable for static vector and raster data where no dynamic overlaying layers. While it is desirable to enable visual explorations of large-scale dynamic vector and raster geospatial data in a web environment, improving the performance between backend datasets and the vector and raster applications remains a challenging technical issue. This dissertation is to implement these challenging and unimplemented areas: how to provide a large-scale dynamic vector and raster data visualization service with dynamic overlaying layers accessible from various client devices through a standard web browser, and how to make the large-scale dynamic vector and raster data visualization service as rapid as the static one. To accomplish these, a large-scale dynamic vector and raster data visualization geographic information system based on parallel map tiling and a comprehensive performance improvement solution are proposed, designed and implemented. They include: the quadtree-based indexing and parallel map tiling, the Legend String, the vector data visualization with dynamic layers overlaying, the vector data time series visualization, the algorithm of vector data rendering, the algorithm of raster data re-projection, the algorithm for elimination of superfluous level of detail, the algorithm for vector data gridding and re-grouping and the cluster servers side vector and raster data caching.
Resumo:
Low-rise buildings are often subjected to high wind loads during hurricanes that lead to severe damage and cause water intrusion. It is therefore important to estimate accurate wind pressures for design purposes to reduce losses. Wind loads on low-rise buildings can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. A new partial turbulence simulation methodology was developed for simulating the effect of low-frequency flow fluctuations on low-rise buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. The methodology was validated by comparing aerodynamic pressure data for building models obtained in the open-jet 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. Field measurements of pressures on Texas Tech University building and Silsoe building were also used for validation purposes. The tests in partial simulation are freed of integral length scale constraints, meaning that model length scales in such testing are only limited by blockage considerations. Thus the partial simulation methodology can be used to produce aerodynamic data for low-rise buildings by using large-scale models in wind tunnels and WOW-like facilities. This is a major advantage, because large-scale models allow for accurate modeling of architectural details, testing at higher Reynolds number, using greater spatial resolution of the pressure taps in high pressure zones, and assessing the performance of aerodynamic devices to reduce wind effects. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. Partial turbulence simulation was used in the WOW to determine the performance of discontinuous perforated parapets in mitigating roof pressures. The comparisons of pressures with and without parapets showed significant reductions in pressure coefficients in the zones with high suctions. This demonstrated the potential of such aerodynamic add-on devices to reduce uplift forces.
Resumo:
Long-span bridges are flexible and therefore are sensitive to wind induced effects. One way to improve the stability of long span bridges against flutter is to use cross-sections that involve twin side-by-side decks. However, this can amplify responses due to vortex induced oscillations. Wind tunnel testing is a well-established practice to evaluate the stability of bridges against wind loads. In order to study the response of the prototype in laboratory, dynamic similarity requirements should be satisfied. One of the parameters that is normally violated in wind tunnel testing is Reynolds number. In this dissertation, the effects of Reynolds number on the aerodynamics of a double deck bridge were evaluated by measuring fluctuating forces on a motionless sectional model of a bridge at different wind speeds representing different Reynolds regimes. Also, the efficacy of vortex mitigation devices was evaluated at different Reynolds number regimes. One other parameter that is frequently ignored in wind tunnel studies is the correct simulation of turbulence characteristics. Due to the difficulties in simulating flow with large turbulence length scale on a sectional model, wind tunnel tests are often performed in smooth flow as a conservative approach. The validity of simplifying assumptions in calculation of buffeting loads, as the direct impact of turbulence, needs to be verified for twin deck bridges. The effects of turbulence characteristics were investigated by testing sectional models of a twin deck bridge under two different turbulent flow conditions. Not only the flow properties play an important role on the aerodynamic response of the bridge, but also the geometry of the cross section shape is expected to have significant effects. In this dissertation, the effects of deck details, such as width of the gap between the twin decks, and traffic barriers on the aerodynamic characteristics of a twin deck bridge were investigated, particularly on the vortex shedding forces with the aim of clarifying how these shape details can alter the wind induced responses. Finally, a summary of the issues that are involved in designing a dynamic test rig for high Reynolds number tests is given, using the studied cross section as an example.
Resumo:
Retrieval, treatment, and disposal of high-level radioactive waste (HLW) is expected to cost between 100 and 300 billion dollars. The risk to workers, public health, and the environment are also a major area of concern for HLW. Visualization of the interface between settled solids and the optically opaque liquid is needed for retrieval of the waste from underground storage tanks. A Profiling sonar selected for this research generates 2-D image of the interface. Multiple experiments were performed to demonstrate the effectiveness of sonar in real-time monitoring the interface inside HLW tanks. First set of experiments demonstrated that objects shapes could be identified even when 30% of solids entrained in liquid, thereby mapping the interface. Simulation of sonar system validated these results. Second set of experiments confirmed the sonar’s ability in detecting the solids with density similar to the immersed liquid. Third set of experiments determined the affects of near by objects on image resolution. Final set of experiments proved the functional and chemical capabilities of sonar in caustic solution.