7 resultados para land monopoly and water
em Digital Commons at Florida International University
Resumo:
South Florida continues to become increasingly developed and urbanized. My exploratory study examines connections between land use and water quality. The main objectives of the project were to develop an understanding of how land use has affected water quality in Miami-Dade canals, and an economic optimization model to estimate the costs of best management practices necessary to improve water quality. Results indicate Miami-Dade County land use and water quality are correlated. Through statistical factor and cluster analysis, it is apparent that agricultural areas are associated with higher concentrations of nitrogen, while urban areas commonly have higher levels of phosphorous than agricultural areas. The economic optimization model shows that urban areas can improve water quality by lowering fertilizer inputs. Agricultural areas can also implement methods to improve water quality although it may be more expensive than urban areas. It is important to keep solutions in mind when looking towards future water quality improvements in South Florida.
Resumo:
Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.
Resumo:
Mara is a transboundary river located in Kenya and Tanzania and considered to be an important life line to the inhabitants of the Mara-Serengeti ecosystem. It is also a source of water for domestic water supply, irrigation, livestock and wildlife. The alarming increase of water demand as well as the decline in the river flow in recent years has been a major challenge for water resource managers and stakeholders. This has necessitated the knowledge of the available water resources in the basin at different times of the year. Historical rainfall, minimum and maximum stream flows were analyzed. Inter and intra-annual variability of trends in streamflow are discussed. Landsat imagery was utilized in order to analyze the land use land cover in the upper Mara River basin. The semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) was used to model the basin water balance and understand the hydrologic effect of the recent land use changes from forest-to-agriculture. The results of this study provided the potential hydrological impacts of three land use change scenarios in the upper Mara River basin. It also adds to the existing literature and knowledge base with a view of promoting better land use management practices in the basin.
Resumo:
With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool 5 (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the 10 upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results 15 show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and 20 water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.
Resumo:
We present 8 yr of long-term water quality, climatological, and water management data for 17 locations in Everglades National Park, Florida. Total phosphorus (P) concentration data from freshwater sites (typically ,0.25 mmol L21, or 8 mg L21) indicate the oligotrophic, P-limited nature of this large freshwater–estuarine landscape. Total P concentrations at estuarine sites near the Gulf of Mexico (average ø0.5 m mol L21) demonstrate the marine source for this limiting nutrient. This ‘‘upside down’’ phenomenon, with the limiting nutrient supplied by the ocean and not the land, is a defining characteristic of the Everglade landscape. We present a conceptual model of how the seasonality of precipitation and the management of canal water inputs control the marine P supply, and we hypothesize that seasonal variability in water residence time controls water quality through internal biogeochemical processing. Low freshwater inflows during the dry season increase estuarine residence times, enabling local processes to control nutrient availability and water quality. El Nin˜o–Southern Oscillation (ENSO) events tend to mute the seasonality of rainfall without altering total annual precipitation inputs. The Nin˜o3 ENSO index (which indicates an ENSO event when positive and a La Nin˜a event when negative) was positively correlated with both annual rainfall and the ratio of dry season to wet season precipitation. This ENSO-driven disruption in seasonal rainfall patterns affected salinity patterns and tended to reduce marine inputs of P to Everglades estuaries. ENSO events also decreased dry season residence times, reducing the importance of estuarine nutrient processing. The combination of variable water management activities and interannual differences in precipitation patterns has a strong influence on nutrient and salinity patterns in Everglades estuaries.
Resumo:
Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.
Resumo:
The study analyzed hydro-climatic and land use sensitivities of stormwater runoff and quality in the complex coastal urban watershed of Miami River Basin, Florida by developing a Storm Water Management Model (EPA SWMM 5). Regression-based empirical models were also developed to explain stream water quality in relation to internal (land uses and hydrology) and external (upstream contribution, seawater) sources and drivers in six highly urbanized canal basins of Southeast Florida. Stormwater runoff and quality were most sensitive to rainfall, imperviousness, and conversion of open lands/parks to residential, commercial and industrial areas. In-stream dissolved oxygen and total phosphorus in the watersheds were dictated by internal stressors while external stressors were dominant for total nitrogen and specific conductance. The research findings and tools will be useful for proactive monitoring and management of storm runoff and urban stream water quality under the changing climate and environment in South Florida and around the world.