7 resultados para knowledge-based system
em Digital Commons at Florida International University
Resumo:
Database design is a difficult problem for non-expert designers. It is desirable to assist such designers during the problem solving process by means of a knowledge based (KB) system. A number of prototype KB systems have been proposed, however there are many shortcomings. Few have incorporated sufficient expertise in modeling relationships, particularly higher order relationships. There has been no empirical study that experimentally tested the effectiveness of any of these KB tools. Problem solving behavior of non-experts, whom the systems were intended to assist, has not been one of the bases for system design. In this project a consulting system for conceptual database design that addresses the above short comings was developed and empirically validated.^ The system incorporates (a) findings on why non-experts commit errors and (b) heuristics for modeling relationships. Two approaches to knowledge base implementation--system restrictiveness and decisional guidance--were used and compared in this project. The Restrictive approach is proscriptive and limits the designer's choices at various design phases by forcing him/her to follow a specific design path. The Guidance system approach which is less restrictive, provides context specific, informative and suggestive guidance throughout the design process. The main objectives of the study are to evaluate (1) whether the knowledge-based system is more effective than a system without the knowledge-base and (2) which knowledge implementation--restrictive or guidance--strategy is more effective. To evaluate the effectiveness of the knowledge base itself, the two systems were compared with a system that does not incorporate the expertise (Control).^ The experimental procedure involved the student subjects solving a task without using the system (pre-treatment task) and another task using one of the three systems (experimental task). The experimental task scores of those subjects who performed satisfactorily in the pre-treatment task were analyzed. Results are (1) The knowledge based approach to database design support lead to more accurate solutions than the control system; (2) No significant difference between the two KB approaches; (3) Guidance approach led to best performance; and (4) The subjects perceived the Restrictive system easier to use than the Guidance system. ^
Resumo:
Security remains a top priority for organizations as their information systems continue to be plagued by security breaches. This dissertation developed a unique approach to assess the security risks associated with information systems based on dynamic neural network architecture. The risks that are considered encompass the production computing environment and the client machine environment. The risks are established as metrics that define how susceptible each of the computing environments is to security breaches. ^ The merit of the approach developed in this dissertation is based on the design and implementation of Artificial Neural Networks to assess the risks in the computing and client machine environments. The datasets that were utilized in the implementation and validation of the model were obtained from business organizations using a web survey tool hosted by Microsoft. This site was designed as a host site for anonymous surveys that were devised specifically as part of this dissertation. Microsoft customers can login to the website and submit their responses to the questionnaire. ^ This work asserted that security in information systems is not dependent exclusively on technology but rather on the triumvirate people, process and technology. The questionnaire and consequently the developed neural network architecture accounted for all three key factors that impact information systems security. ^ As part of the study, a methodology on how to develop, train and validate such a predictive model was devised and successfully deployed. This methodology prescribed how to determine the optimal topology, activation function, and associated parameters for this security based scenario. The assessment of the effects of security breaches to the information systems has traditionally been post-mortem whereas this dissertation provided a predictive solution where organizations can determine how susceptible their environments are to security breaches in a proactive way. ^
Resumo:
Organizations are increasingly relying on teams to do the work that has traditionally been done by individuals. At the same time, the environments in which these organizations and teams operate have been becoming progressively more complex and uncertain. These trends raise important questions about the factors that enable teams to adapt. In response to these questions, the current study sought to identify the cognitive, behavioral, and motivational processes and emergent states that promote a team's adaptation to unforeseen changes and novel events, and the team compositional characteristics and leadership processes that enabled these processes and emergent states. Two hundred twenty two undergraduate students from a large Southeastern University composed 74 3-person teams, and participated in a computerized decision-making simulation where each team formed the governing body (i.e., Mayor's cabinet) for two separate simulated cities, and made strategic decisions about city operations. Participants were randomly assigned to one of three roles, distributing expertise and creating mutual interdependence. External team leader sensegiving was manipulated through video recorded communications from an external team leader. Results indicate that team cognitive ability, achievement striving, and psychological collectivism, as well as external team leader sensegiving, were all related to the similarity and quality of team members' strategy-focused mental models (cognitive emergent states), and to the amount of information sharing among members (behavioral process). In turn, teams with more similar and higher quality mental models, and who shared greater levels of information, were found to have a greater ability to react and adapt to environmental changes, and to have greater levels of decision-making effectiveness. Results indicate a pattern of relationships consistent with hypotheses, and have important implications for organizations and knowledge-based teams charged with management responsibilities. Organizations should staff teams with the compositional characteristics that enable the development of similar and high quality mental models, and that promote information sharing among teammates. Similarly, organizations which train and develop leaders to engage in sensegiving behaviors enable team adaptability and promote enhanced decision-making effectiveness when faced with unforeseen changes and novel situations.
Resumo:
Database design is a difficult problem for non-expert designers. It is desirable to assist such designers during the problem solving process by means of a knowledge based (KB) system. Although a number of prototype KB systems have been proposed, there are many shortcomings. Firstly, few have incorporated sufficient expertise in modeling relationships, particularly higher order relationships. Secondly, there does not seem to be any published empirical study that experimentally tested the effectiveness of any of these KB tools. Thirdly, problem solving behavior of non-experts, whom the systems were intended to assist, has not been one of the bases for system design. In this project, a consulting system, called CODA, for conceptual database design that addresses the above short comings was developed and empirically validated. More specifically, the CODA system incorporates (a) findings on why non-experts commit errors and (b) heuristics for modeling relationships. Two approaches to knowledge base implementation were used and compared in this project, namely system restrictiveness and decisional guidance (Silver 1990). The Restrictive system uses a proscriptive approach and limits the designer's choices at various design phases by forcing him/her to follow a specific design path. The Guidance system approach, which is less restrictive, involves providing context specific, informative and suggestive guidance throughout the design process. Both the approaches would prevent erroneous design decisions. The main objectives of the study are to evaluate (1) whether the knowledge-based system is more effective than the system without a knowledge-base and (2) which approach to knowledge implementation - whether Restrictive or Guidance - is more effective. To evaluate the effectiveness of the knowledge base itself, the systems were compared with a system that does not incorporate the expertise (Control). An experimental procedure using student subjects was used to test the effectiveness of the systems. The subjects solved a task without using the system (pre-treatment task) and another task using one of the three systems, viz. Control, Guidance or Restrictive (experimental task). Analysis of experimental task scores of those subjects who performed satisfactorily in the pre-treatment task revealed that the knowledge based approach to database design support lead to more accurate solutions than the control system. Among the two KB approaches, Guidance approach was found to lead to better performance when compared to the Control system. It was found that the subjects perceived the Restrictive system easier to use than the Guidance system.
Resumo:
A knowledge management tool developed by the GIS Center for to support project reporting tools, project publications, and a project data portal for materials related to the WAWASH Program.
Resumo:
In recent years, a surprising new phenomenon has emerged in which globally-distributed online communities collaborate to create useful and sophisticated computer software. These open source software groups are comprised of generally unaffiliated individuals and organizations who work in a seemingly chaotic fashion and who participate on a voluntary basis without direct financial incentive. ^ The purpose of this research is to investigate the relationship between the social network structure of these intriguing groups and their level of output and activity, where social network structure is defined as (1) closure or connectedness within the group, (2) bridging ties which extend outside of the group, and (3) leader centrality within the group. Based on well-tested theories of social capital and centrality in teams, propositions were formulated which suggest that social network structures associated with successful open source software project communities will exhibit high levels of bridging and moderate levels of closure and leader centrality. ^ The research setting was the SourceForge hosting organization and a study population of 143 project communities was identified. Independent variables included measures of closure and leader centrality defined over conversational ties, along with measures of bridging defined over membership ties. Dependent variables included source code commits and software releases for community output, and software downloads and project site page views for community activity. A cross-sectional study design was used and archival data were extracted and aggregated for the two-year period following the first release of project software. The resulting compiled variables were analyzed using multiple linear and quadratic regressions, controlling for group size and conversational volume. ^ Contrary to theory-based expectations, the surprising results showed that successful project groups exhibited low levels of closure and that the levels of bridging and leader centrality were not important factors of success. These findings suggest that the creation and use of open source software may represent a fundamentally new socio-technical development process which disrupts the team paradigm and which triggers the need for building new theories of collaborative development. These new theories could point towards the broader application of open source methods for the creation of knowledge-based products other than software. ^
Resumo:
Virtual machines (VMs) are powerful platforms for building agile datacenters and emerging cloud systems. However, resource management for a VM-based system is still a challenging task. First, the complexity of application workloads as well as the interference among competing workloads makes it difficult to understand their VMs’ resource demands for meeting their Quality of Service (QoS) targets; Second, the dynamics in the applications and system makes it also difficult to maintain the desired QoS target while the environment changes; Third, the transparency of virtualization presents a hurdle for guest-layer application and host-layer VM scheduler to cooperate and improve application QoS and system efficiency. This dissertation proposes to address the above challenges through fuzzy modeling and control theory based VM resource management. First, a fuzzy-logic-based nonlinear modeling approach is proposed to accurately capture a VM’s complex demands of multiple types of resources automatically online based on the observed workload and resource usages. Second, to enable fast adaption for resource management, the fuzzy modeling approach is integrated with a predictive-control-based controller to form a new Fuzzy Modeling Predictive Control (FMPC) approach which can quickly track the applications’ QoS targets and optimize the resource allocations under dynamic changes in the system. Finally, to address the limitations of black-box-based resource management solutions, a cross-layer optimization approach is proposed to enable cooperation between a VM’s host and guest layers and further improve the application QoS and resource usage efficiency. The above proposed approaches are prototyped and evaluated on a Xen-based virtualized system and evaluated with representative benchmarks including TPC-H, RUBiS, and TerraFly. The results demonstrate that the fuzzy-modeling-based approach improves the accuracy in resource prediction by up to 31.4% compared to conventional regression approaches. The FMPC approach substantially outperforms the traditional linear-model-based predictive control approach in meeting application QoS targets for an oversubscribed system. It is able to manage dynamic VM resource allocations and migrations for over 100 concurrent VMs across multiple hosts with good efficiency. Finally, the cross-layer optimization approach further improves the performance of a virtualized application by up to 40% when the resources are contended by dynamic workloads.