4 resultados para knowing-known
em Digital Commons at Florida International University
Resumo:
This study examined the association of theoretically guided and empirically identified psychosocial variables on the co-occurrence of risky sexual behavior with alcohol consumption among university students. The study utilized event analysis to determine whether risky sex occurred during the same event in which alcohol was consumed. Relevant conceptualizations included alcohol disinhibition, self-efficacy, and social network theories. Predictor variables included negative condom attitudes, general risk taking, drinking motives, mistrust, social group membership, and gender. Factor analysis was employed to identify dimensions of drinking motives. Measured risky sex behaviors were (a) sex without a condom, (b) sex with people not known very well, (c) sex with injecting drug users (IDUs), (d) sex with people without knowing whether they had a STD, and (e) sex with using drugs. A purposive sample was used and included 222 male and female students recruited from a major urban university. Chi-square analysis was used to determine whether participants were more likely to engage in risky sex behavior in different alcohol use contexts. These contexts were only when drinking, only when not drinking, and when drinking or not. The chi-square findings did not support the hypothesis that university students who use alcohol with sex will engage in riskier sex. These results added to the literature by extending other similar findings to a university student sample. For each of the observed risky sex behaviors, discriminant analysis methodology was used to determine whether the predictor variables would differentiate the drinking contexts, or whether the behavior occurred. Results from discriminant analyses indicated that sex with people not known very well was the only behavior for which there were significant discriminant functions. Gender and enhancement drinking motives were important constructs in the classification model. Limitations of the study and implications for future research, social work practice and policy are discussed. ^
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as “histogram binning” inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. ^ Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. ^ The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. ^ These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. ^ In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation. ^
Resumo:
This study examined the association of theoretically guided and empirically identified psychosocial variables on the co-occurrence of risky sexual behavior with alcohol consumption among university students. The study utilized event analysis to determine whether risky sex occurred during the same event in which alcohol was consumed. Relevant conceptualizations included alcohol disinhibition, self-efficacy, and social network theories. Predictor variables included negative condom attitudes, general risk taking, drinking motives, mistrust, social group membership, and gender. Factor analysis was employed to identify dimensions of drinking motives. Measured risky sex behaviors were (a) sex without a condom, (b) sex with people not known very well, (c) sex with injecting drug users (IDUs), (d) sex with people without knowing whether they had a STD, and (e) sex with using drugs. A purposive sample was used and included 222 male and female students recruited from a major urban university. Chi-square analysis was used to determine whether participants were more likely to engage in risky sex behavior in different alcohol use contexts. These contexts were only when drinking, only when not drinking, and when drinking or not. The chi-square findings did not support the hypothesis that university students who use alcohol with sex will engage in riskier sex. These results added to the literature by extending other similar findings to a university student sample. For each of the observed risky sex behaviors, discriminant analysis methodology was used to determine whether the predictor variables would differentiate the drinking contexts, or whether the behavior occurred. Results from discriminant analyses indicated that sex with people not known very well was the only behavior for which there were significant discriminant functions. Gender and enhancement drinking motives were important constructs in the classification model. Limitations of the study and implications for future research, social work practice and policy are discussed.
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as "histogram binning" inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation.