8 resultados para kernel regression
em Digital Commons at Florida International University
Resumo:
Annual average daily traffic (AADT) is important information for many transportation planning, design, operation, and maintenance activities, as well as for the allocation of highway funds. Many studies have attempted AADT estimation using factor approach, regression analysis, time series, and artificial neural networks. However, these methods are unable to account for spatially variable influence of independent variables on the dependent variable even though it is well known that to many transportation problems, including AADT estimation, spatial context is important. ^ In this study, applications of geographically weighted regression (GWR) methods to estimating AADT were investigated. The GWR based methods considered the influence of correlations among the variables over space and the spatially non-stationarity of the variables. A GWR model allows different relationships between the dependent and independent variables to exist at different points in space. In other words, model parameters vary from location to location and the locally linear regression parameters at a point are affected more by observations near that point than observations further away. ^ The study area was Broward County, Florida. Broward County lies on the Atlantic coast between Palm Beach and Miami-Dade counties. In this study, a total of 67 variables were considered as potential AADT predictors, and six variables (lanes, speed, regional accessibility, direct access, density of roadway length, and density of seasonal household) were selected to develop the models. ^ To investigate the predictive powers of various AADT predictors over the space, the statistics including local r-square, local parameter estimates, and local errors were examined and mapped. The local variations in relationships among parameters were investigated, measured, and mapped to assess the usefulness of GWR methods. ^ The results indicated that the GWR models were able to better explain the variation in the data and to predict AADT with smaller errors than the ordinary linear regression models for the same dataset. Additionally, GWR was able to model the spatial non-stationarity in the data, i.e., the spatially varying relationship between AADT and predictors, which cannot be modeled in ordinary linear regression. ^
Resumo:
This paper uses self-efficacy to predict the success of women in introductory physics. We show how sequential logistic regression demonstrates the predictive ability of self-efficacy, and reveals variations with type of physics course. Also discussed are the sources of self-efficacy that have the largest impact on predictive ability.
Resumo:
Multiple linear regression model plays a key role in statistical inference and it has extensive applications in business, environmental, physical and social sciences. Multicollinearity has been a considerable problem in multiple regression analysis. When the regressor variables are multicollinear, it becomes difficult to make precise statistical inferences about the regression coefficients. There are some statistical methods that can be used, which are discussed in this thesis are ridge regression, Liu, two parameter biased and LASSO estimators. Firstly, an analytical comparison on the basis of risk was made among ridge, Liu and LASSO estimators under orthonormal regression model. I found that LASSO dominates least squares, ridge and Liu estimators over a significant portion of the parameter space for large dimension. Secondly, a simulation study was conducted to compare performance of ridge, Liu and two parameter biased estimator by their mean squared error criterion. I found that two parameter biased estimator performs better than its corresponding ridge regression estimator. Overall, Liu estimator performs better than both ridge and two parameter biased estimator.
Resumo:
Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. ^ We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. ^ We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. ^ We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). ^ In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.^
Resumo:
The purpose of this research is to develop an optimal kernel which would be used in a real-time engineering and communications system. Since the application is a real-time system, relevant real-time issues are studied in conjunction with kernel related issues. The emphasis of the research is the development of a kernel which would not only adhere to the criteria of a real-time environment, namely determinism and performance, but also provide the flexibility and portability associated with non-real-time environments. The essence of the research is to study how the features found in non-real-time systems could be applied to the real-time system in order to generate an optimal kernel which would provide flexibility and architecture independence while maintaining the performance needed by most of the engineering applications. Traditionally, development of real-time kernels has been done using assembly language. By utilizing the powerful constructs of the C language, a real-time kernel was developed which addressed the goals of flexibility and portability while still meeting the real-time criteria. The implementation of the kernel is carried out using the powerful 68010/20/30/40 microprocessor based systems.
Resumo:
Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.
Resumo:
Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.