8 resultados para kenya
em Digital Commons at Florida International University
Resumo:
Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.
Resumo:
Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.
Resumo:
The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.
Resumo:
The mode in which a lithosphere plate supports overlying topography is greatly driven by the strength of the plate. By analyzing the geophysical signature of lithosphere flexure, in the space and spectral domains, the strength of the plates that support the north Andean mountains and adjacent basins, and the topography of Kenya was investigated. In addition, the effect of windowing on elastic thickness estimates obtained via the coherence method was evaluated. ^ The coherence between the topography and Bouguer gravity spectra of northern South America suggests that the average elastic thickness of the lithosphere is 30 km. Although lateral variations were not resolved by the coherence implementation, these became apparent by modeling the foreland stratigraphy of the Llanos, Barinas and Maracaibo sub-Andean basins. Flexural models reveal a zone of lithosphere weakness beneath the eastern flank of the Eastern Cordillera and western flank of the Venezuelan Andes. The gravity anomaly calculated from these models is consistent with the observed Bouguer gravity anomaly. This zone of weakness appears to separate the strong, old Guyana shield lithosphere from the weaker and probably younger Andean lithosphere. The zone of weakness may correspond to a Paleozoic feature at the western margin of cratonic South America, or a Mesozoic rift arm that weakened the proto-Andean lithosphere. ^ Using synthetic data as well as the northern South America topography and gravity, this study demonstrates that lithosphere strength calculated from the coherence of mirrored data may overestimate the true lithosphere strength. As a result, many lithosphere plates may be weaker than currently thought. In light of this observation, gravity and topography data from Kenya were reevaluated using multitaper spectral techniques. The elastic thickness of this plate, currently undergoing rifting, was estimated at 7 to 8 km, a factor of 2 less than previously estimated. These estimates suggest that despite intense fracturing and sustained tensile stresses, continental lithosphere plates undergoing rifting are able to retain some strength. ^
Resumo:
The Mara River in East Africa is currently experiencing poor water quality and increased fluctuations in seasonal flow. This study investigated technically effective and economically viable Best Management Practices for adoption in the Mara River Basin of Kenya that can stop further water resources degradation. A survey of 155 farmers was conducted in the upper catchment of the Kenyan side of the river basin. Farmers provided their assessment of BMPs that would best suit their farm in terms of water quality improvement, economic feasibility, and technicalsuitability. Cost data on different practices from farmers and published literature was collected. The results indicated that erosion control structures and runoff management practices were most suitable for adoption. The study estimated the total area that would be improved to restore water quality and reduce further water resources degradation. Farmers were found to incur losses from adopting new practices and would therefore require monetary support.
Resumo:
The highly polymorphic DlS80 locus has no known genetic function. This variable number of tandem repeat (VNTR) has been valuable in forensic identification. We have obtained allelic and genotypic frequencies for five African populations (Benin, Cameroon, Egypt, Kenya and Rwanda), which could be employed as databases to identify individuals. The polymerase chain reaction, followed by vertical polyacrylamide gel electrophoresis and silver staining was our method of analysis. Allele frequencies were used to infer genetic associations using Phylip 3.5, Principal Component and G-test statistical programs. Tests for Hardy-Weinberg equilibrium were employed. Fst estimates and power of discrimination values were also determined for each of our populations. Our analyses of 28 additional populations demonstrated that the D1 S80 locus alone provided for the discrimination of major racial groups. Genetic homogeneity between the African groups was observed. We have generated a database useful for human differentiation and phylogenetic studies.
Resumo:
Mara is a transboundary river located in Kenya and Tanzania and considered to be an important life line to the inhabitants of the Mara-Serengeti ecosystem. It is also a source of water for domestic water supply, irrigation, livestock and wildlife. The alarming increase of water demand as well as the decline in the river flow in recent years has been a major challenge for water resource managers and stakeholders. This has necessitated the knowledge of the available water resources in the basin at different times of the year. Historical rainfall, minimum and maximum stream flows were analyzed. Inter and intra-annual variability of trends in streamflow are discussed. Landsat imagery was utilized in order to analyze the land use land cover in the upper Mara River basin. The semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) was used to model the basin water balance and understand the hydrologic effect of the recent land use changes from forest-to-agriculture. The results of this study provided the potential hydrological impacts of three land use change scenarios in the upper Mara River basin. It also adds to the existing literature and knowledge base with a view of promoting better land use management practices in the basin.