4 resultados para ispspin dependent cross section
em Digital Commons at Florida International University
Resumo:
The kaon electroproduction reaction H(e, e ′K+)Λ was studied as a function of the four momentum transfer, Q2, for different values of the virtual photon polarization parameter. Electrons and kaons were detected in coincidence in two High Resolution Spectrometers (HRS) at Jefferson Lab. Data were taken at electron beam energies ranging from 3.4006 to 5.7544 GeV. The kaons were identified using combined time of flight information and two Aerogel Čerenkov detectors used for particle identification. For different values of Q2 ranging from 1.90 to 2.35 GeV/c2 the center of mass cross sections for the Λ hyperon were determined for 20 kinematics and the longitudinal, σ L, and transverse, σT, terms were separated using the Rosenbluth separation technique. ^ Comparisons between available models and data have been studied. The comparison supports the t-channel dominance behavior for kaon electroproduction. All models seem to underpredict the transverse cross section. An estimate of the kaon form factor has been explored by determining the sensitivity of the separated cross sections to variations of the kaon EM form factor. From comparison between models and data we can conclude that interpreting the data using the Regge model is quite sensitive to a particular choice for the EM form factors. The data from the E98-108 experiment extends the range of the available kaon electroproduction cross section data to an unexplored region of Q2 where no separations have ever been performed. ^
Resumo:
The two-photon exchange phenomenon is believed to be responsible for the discrepancy observed between the ratio of proton electric and magnetic form factors, measured by the Rosenbluth and polarization transfer methods. This disagreement is about a factor of three at Q 2 of 5.6 GeV2. The precise knowledge of the proton form factors is of critical importance in understanding the structure of this nucleon. The theoretical models that estimate the size of the two-photon exchange (TPE) radiative correction are poorly constrained. This factor was found to be directly measurable by taking the ratio of the electron-proton and positron-proton elastic scattering cross sections, as the TPE effect changes sign with respect to the charge of the incident particle. A test run of a modified beamline has been conducted with the CEBAF Large Acceptance Spectrometer (CLAS) at Thomas Jefferson National Accelerator Facility. This test run demonstrated the feasibility of producing a mixed electron/positron beam of good quality. Extensive simulations performed prior to the run were used to reduce the background rate that limits the production luminosity. A 3.3 GeV primary electron beam was used that resulted in an average secondary lepton beam of 1 GeV. As a result, the elastic scattering data of both lepton types were obtained at scattering angles up to 40 degrees for Q2 up to 1.5 GeV2. The cross section ratio displayed an &epsis; dependence that was Q2 dependent at smaller Q2 limits. The magnitude of the average ratio as a function of &epsis; was consistent with the previous measurements, and the elastic (Blunden) model to within the experimental uncertainties. Ultimately, higher luminosity is needed to extend the data range to lower &epsis; where the TPE effect is predicted to be largest.
Resumo:
The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric (GE) and the magnetic ( GM) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton [R = σ(e +p)/σ(e+p)]. The ratio R was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (&epsis;). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the Q2 dependence of R at high &epsis;(&epsis; > 0.8) and the $&epsis; dependence of R at ⟨Q 2⟩ approx 0.85 GeV2. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely reconciles the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors.
Resumo:
The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric ($G_{E}$) and the magnetic ($G_{M}$) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton $\large(R = \frac{\sigma (e^{+}p)}{\sigma (e^{-}p)}\large)$. The ratio $R$ was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of $R$ on kinematic variables such as squared four-momentum transfer ($Q^{2}$) and the virtual photon polarization parameter ($\varepsilon$). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH$_{2}$) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the $Q^{2}$ dependence of $R$ at high $\varepsilon$ ($\varepsilon > $ 0.8) and the $\varepsilon$ dependence of $R$ at $\langle Q^{2} \rangle \approx 0.85$ GeV$^{2}$. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely reconciles the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors.