9 resultados para ionosphere variations and disturbances
em Digital Commons at Florida International University
Resumo:
Two Barremian-Aptian sequences studied in Durango and Nuevo Leon States, northeastern Mexico include three lithic units which have been described as the Cupido Formation of Barremian-early Early Aptian age, its lateral equivalent, the Lower Tamaulipas Formation, and the La Peña Formation extending through the early Albian. ^ The present work improves the existing ammonite Aptian biozonation by considering constraints associated with a discontinuous spatial and temporal record of the different taxa within the La Peña Formation. ^ Four ammonite biozones are established: (1) The Dufrenoyia justinae Zone for the late Early Aptian, (2) The Burckhardtites nazasensis/Rhytidoplites robertsi Zone for the middle Aptian, (3) The Cheloniceras inconstans Zone for the early Late Aptian, and (4) The Hypacanthoplites cf. leanzae Zone for the late late Aptian. ^ Also, a detailed sedimentological analysis of the sections shed further light on the possible causes that controlled intermittent occurrences of the ammonites in relation to the prevailing paleoceanographic and paleoecologic conditions in northeastern Mexico during the late Barremian-Aptian. ^ Microfacies analyses show that the upper part of the Cupido facies are represented by biocalcirudite with rudists, biocalcarenites with oolites and algae, and rich benthonic foraminifera assemblages with ostracods. These facies are related to paleoceanographic conditions of sedimentation within a shallow-marine carbonate platform. Its lateral equivalent, deep-water facies extended to the southeast and it is represented by the Lower Tamaulipas Formation, which includes planktonic foraminifera, ostracods, and mollusk and echinoid fragments. The beginning of deposition of the La Peña Formation in the late Early Aptian is characterized by an increase in terrigenous materials and significant decrease in the abundance of benthic fauna. The La Peña Formation is recognized by an alternation of marls and shale limestones containing ammonites, planktonic foraminifera, ostracods, and radiolaria toward the top. Accumulation of the La Peña continued throughout the end of the Aptian and records changes in conditions of sedimentation and productivity in the water column, which abruptly terminated the carbonate deposition in the Cupido Platform. ^ Results of carbon/carbonate content analyses show that changes from the Cupido to the La Peña facies are also characterized by an increase of organic carbon, which indicate the onset of enhanced dysoxic/anoxic conditions in the lower water column. ^
Resumo:
Two Barremian-Aptian sequences studied in Durango and Nuevo Leon States, northeastern Mexico include three lithic units which have been described as the Cupido Formation of Barremian-early Early Aptian age, its lateral equivalent, the Lower Tamaulipas Formation, and the La Pena Formation extending through the early Albian. The present work improves the existing ammonite Aptian biozonation by considering constraints associated with a discontinuous spatial and temporal record of the different taxa within the La Pena Formation. Four ammonite biozones are established: 1) The Dufrenoyia justinae Zone for the late Early Aptian, 2) The Burckhardtites nazasensis/Rhytidoplites robertsi Zone for the middle Aptian, 3) The Cheloniceras inconstans Zone for the early Late Aptian, and 4) The Hypacanthoplites cf. leanzae Zone for the late late Aptian. Also, a detailed sedimentological analysis of the sections shed further light on the possible causes that controlled intermittent occurrences of the ammonites in relation to the prevailing paleoceanographic and paleoecologic conditions in northeastern Mexico during the late Barremian-Aptian. Microfacies analyses show that the upper part of the Cupido facies are represented by biocalcirudite with rudists, biocalcarenites with oolites and algae, and rich benthonic foraminifera assemblages with ostracods. These facies are related to paleoceanographic conditions of sedimentation within a shallow-marine carbonate platform. Its lateral equivalent, deep-water facies extended to the southeast and it is represented by the Lower Tamaulipas Formation, which includes planktonic foraminifera, ostracods, and mollusk and echinoid fragments. The beginning of deposition of the La Pena Formation in the late Early Aptian is characterized by an increase in terrigenous materials and significant decrease in the abundance of benthic fauna. The La Pena Formation is recognized by an alternation of marls and shale limestones containing ammonites, planktonic foraminifera, ostracods, and radiolaria toward the top. Accumulation of the La Pena continued throughout the end of the Aptian and records changes in conditions of sedimentation and productivity in the water column, which abruptly terminated the carbonate deposition in the Cupido Platform. Results of carbon/carbonate content analyses show that changes from the Cupido to the La Pena facies are also characterized by an increase of organic carbon, which indicate the onset of enhanced dysoxic/anoxic conditions in the lower water column.
Resumo:
The maintenance of species richness is often a priority in the management of nature reserves, where consumptive use of resources is generally prohibited. The purpose of this research was to improve management by understanding the vegetation dynamics in the lowlands of Nepal. The objectives were to determine vegetation associations in relation to environments and human-induced disturbances that affect vegetation dynamics on floodplains, where upstream barrages had altered flooding patterns, and consumptive use of plant resources was influencing natural processes. Floodplain vegetation in relation to physical environments and disturbances were studied along transects, perpendicular to the course of the Mahakali River in the western Terai, Nepal. Forest structural changes were studied for three years in ten plots. A randomized split-block experiment with nine burning and grazing treatments was performed in seasonally flooded grasslands. A semi-structured questionnaire was used to assess people's socio-economic status, natural resource use patterns and conservation attitudes. ^ Elevation, soil organic matter, nitrogen, percentage of sand and grazing intensity were significant in delineating herbaceous vegetation assemblages, whereas elevation and livestock grazing were significant in defining forest type boundaries. On the floodplain islands, highly grazed Dalbergia sissoo-Acacia catechu forests were devoid of understory woody vegetation, but the lightly grazed D. sissoo-mixed forests had a well-developed second canopy layer, comprising woody species other than D. sissoo and A. catechu. In grasslands, species richness and biomass production were highest at intermediate disturbance level represented by the lightly grazed and ungrazed early-burned treatments. Ethnicity, education and resource use patterns were important in influencing conservation attitudes. A succession towards the mixed forests would occur in D. sissoo-dominated floodplain forests, where dams and barrages reduce flooding and associated fluvial processes, and if livestock grazing is stopped, as occasionally suggested by nature conservationists. In seasonally flooded grasslands, early burning with moderate grazing would enhance the species diversity and productivity. There is a need to implement a participatory integrated wetland management plan, to include community development, education and off farm income generation, to assure participatory conservation and management of wetlands in Nepal. ^
Resumo:
Groundwater systems of different densities are often mathematically modeled to understand and predict environmental behavior such as seawater intrusion or submarine groundwater discharge. Additional data collection may be justified if it will cost-effectively aid in reducing the uncertainty of a model's prediction. The collection of salinity, as well as, temperature data could aid in reducing predictive uncertainty in a variable-density model. However, before numerical models can be created, rigorous testing of the modeling code needs to be completed. This research documents the benchmark testing of a new modeling code, SEAWAT Version 4. The benchmark problems include various combinations of density-dependent flow resulting from variations in concentration and temperature. The verified code, SEAWAT, was then applied to two different hydrological analyses to explore the capacity of a variable-density model to guide data collection. ^ The first analysis tested a linear method to guide data collection by quantifying the contribution of different data types and locations toward reducing predictive uncertainty in a nonlinear variable-density flow and transport model. The relative contributions of temperature and concentration measurements, at different locations within a simulated carbonate platform, for predicting movement of the saltwater interface were assessed. Results from the method showed that concentration data had greater worth than temperature data in reducing predictive uncertainty in this case. Results also indicated that a linear method could be used to quantify data worth in a nonlinear model. ^ The second hydrological analysis utilized a model to identify the transient response of the salinity, temperature, age, and amount of submarine groundwater discharge to changes in tidal ocean stage, seasonal temperature variations, and different types of geology. The model was compared to multiple kinds of data to (1) calibrate and verify the model, and (2) explore the potential for the model to be used to guide the collection of data using techniques such as electromagnetic resistivity, thermal imagery, and seepage meters. Results indicated that the model can be used to give insight to submarine groundwater discharge and be used to guide data collection. ^
Resumo:
The Earth's upper mantle, mainly composed of olivine, is seismically anisotropic. Seismic anisotropy attenuation has been observed at 220km depth. Karato et al. (1992) attributed this attenuation to a transition between two deformation mechanisms, from dislocation creep above 220km to diffusion creep below 220km, induced by a change in water content. Couvy (2005) and Mainprice et al. (2005) predicted a change in Lattice Preferred Orientation induced by pressure, which comes from a change of slip system, from [100] slip to [001] slip, and is responsible for the seismic anisotropy attenuation. Raterron et al. (2007) ran single crystal deformation experiments under anhydrous conditions and observed that the slip system transition occurs around 8GPa, which corresponds to a depth of 260Km. Experiments were done to quantify the effects of water on olivine single crystals deformed using D-DIA press and synchrotron beam. Deformations were carried out in uniaxial compression along [110]c, [011]c, and [101]c, crystallographic directions, at pressure ranging from 4 to 8GPa and temperature between 1373 and 1473K. Talc sleeves about the annulus of the single crystals were used as source of water in the assembly. Stress and specimen strain rates were calculated by in-situ X-ray diffraction and time resolved imaging, respectively. By direct comparison of single crystals strain rates, we observed that [110]c deforms faster than [011]c below 5GPa. However above 6GPa [011]c deforms faster than [110]c. This revealed that [100](010) is the dominant slip system below 5GPa, and above 6GPa [001](010) becomes dominant. According to our results, the slip system transition, which is induced by pressure, occurs at 6GPa. Water influences the pressure where the switch over occurs, by lowering the transition pressure. The pressure effect on the slip systems activity has been quantified and the hydrolytic weakening has also been estimated for both orientations. Data also shows that temperature affects the slip system activity. The regional variation of the depth for the seismic anisotropy attenuation, which would depend on local hydroxyl content and temperature variations and explains the seismic anisotropy attenuation occurring at about 220Km depth in the mantle, where the pressure is about 6GPa. Deformation of MgO single crystal oriented [100], [110] and [111] were also performed. The results predict a change in the slip system activity at 23GPa, again induced by pressure. This explains the seismic anisotropy observed in the lower mantle.
Design optimization of modern machine drive systems for maximum fault tolerant and optimal operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^
Resumo:
Hydrophobicity as measured by Log P is an important molecular property related to toxicity and carcinogenicity. With increasing public health concerns for the effects of Disinfection By-Products (DBPs), there are considerable benefits in developing Quantitative Structure and Activity Relationship (QSAR) models capable of accurately predicting Log P. In this research, Log P values of 173 DBP compounds in 6 functional classes were used to develop QSAR models, by applying 3 molecular descriptors, namely, Energy of the Lowest Unoccupied Molecular Orbital (ELUMO), Number of Chlorine (NCl) and Number of Carbon (NC) by Multiple Linear Regression (MLR) analysis. The QSAR models developed were validated based on the Organization for Economic Co-operation and Development (OECD) principles. The model Applicability Domain (AD) and mechanistic interpretation were explored. Considering the very complex nature of DBPs, the established QSAR models performed very well with respect to goodness-of-fit, robustness and predictability. The predicted values of Log P of DBPs by the QSAR models were found to be significant with a correlation coefficient R2 from 81% to 98%. The Leverage Approach by Williams Plot was applied to detect and remove outliers, consequently increasing R 2 by approximately 2% to 13% for different DBP classes. The developed QSAR models were statistically validated for their predictive power by the Leave-One-Out (LOO) and Leave-Many-Out (LMO) cross validation methods. Finally, Monte Carlo simulation was used to assess the variations and inherent uncertainties in the QSAR models of Log P and determine the most influential parameters in connection with Log P prediction. The developed QSAR models in this dissertation will have a broad applicability domain because the research data set covered six out of eight common DBP classes, including halogenated alkane, halogenated alkene, halogenated aromatic, halogenated aldehyde, halogenated ketone, and halogenated carboxylic acid, which have been brought to the attention of regulatory agencies in recent years. Furthermore, the QSAR models are suitable to be used for prediction of similar DBP compounds within the same applicability domain. The selection and integration of various methodologies developed in this research may also benefit future research in similar fields.
Design Optimization of Modern Machine-drive Systems for Maximum Fault Tolerant and Optimal Operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.
Resumo:
In the fall of 2005, U.S. Fish and Wildlife Services (USFWS) contracted with Florida International University (FIU) to study the physical and biological drivers underlying the distribution of woody plant species in the marl prairie habitat of the Cape Sable Seaside Sparrow (CSSS). This report presents what we have learned about woody plant encroachment based on studies carried out during the period 2006-2008. The freshwater marl prairie habitat currently occupied by the Cape Sable seaside sparrow (CSSS; Ammodramus maritimus mirabilis) is a dynamic mosaic comprised of species-rich grassland communities and tree islands of various sizes, densities and compositions. Landscape heterogeneity and the scale of vegetative components across the marl prairie is primarily determined by hydrologic conditions, biological factors (e.g. dispersal and growth morphology), and disturbances such as fire. The woody component of the marl prairie landscape is subject to expansion through multiple positive feedback mechanisms, which may be initiated by recent land use change (e.g. drainage). Because sparrows are known to avoid areas where the woody component is too extensive, a better understanding of invasion dynamics is needed to ensure proper management.