6 resultados para investment models
em Digital Commons at Florida International University
Resumo:
This dissertation examines one category of international capital flows, private portfolio investments (private refers to the source of capital). There is an overall lack of a coherent and consistent definition of foreign portfolio investment. We clarify these definitional issues.^ Two main questions that pertain to private foreign portfolio investments (FPI) are explored. The first problem is the phenomenon of home preference, often referred to as home bias. Related to this are the observed cross-investment flows between countries that seem to contradict the textbook rendition of private FPI. A description of the theories purporting to resolve the home preference puzzle (and the cross-investment one) are summarized and evaluated. Most of this literature considers investors from major developed countries. I consider--as well--whether investors in less developed countries have home preference.^ The dissertation shows that home preference is indeed pervasive and profound across countries, in both developed and emerging markets. For the U.S., I examine home bias in both equity and bond holdings as well. I find that home bias is greater when we look at equity and bond holdings than equity holdings solely.^ In this dissertation a model is developed to explain home bias. This model is original and fills a gap in the literature as there have been no satisfactory models that handle at the same time both home preference and cross-border holdings in the context of information asymmetries. This model reflects what we see in the data and permits us to reach certain results by the use of comparative statics methods. The model suggests, counter-intuitively, that as the rate of return in a country relative to the world rate of return increases, home preference decreases. In the context of our relatively simple model we ascribe this result to the higher variance of the now higher return for home assets. We also find, this time as intended, that as risk aversion increases, investors diversify further so that home preference decreases.^ The second question that the dissertation deals with is the volatility of private foreign portfolio investment. Countries that are recipients of these flows have been wary of such flows because of their perceived volatility. Often the contrast is made with the perceived absence of volatility in foreign direct investment flows. I analyze the validity of these concerns using first net flow data and then gross flow data. The results show that FPI is not, in relative terms, more volatile than other flows in our sample of eight countries (half were developed countries and the rest were emerging markets).^ The implication therefore is that restricting FPI flows may be harmful in the sense that private capital may not be allocated efficiently worldwide to the detriment of capital poor economies. More to the point, any such restrictions would in fact be misguided. ^
Resumo:
Liquidity is an important attribute of an asset that investors would like to take into consideration when making investment decisions. However, the previous empirical evidence whether liquidity is a determinant of stock return is not unanimous. This dissertation provides a very comprehensive study about the role of liquidity in asset pricing using the Fama-French (1993) three-factor and Kraus and Litzenberger (1976) three-moment CAPM as models for risk adjustment. The relationship between liquidity and well-known determinants of stock returns such as size and book-to-market are also investigated. This study examines the liquidity and asset pricing issues for both intertemporal as well as cross-sectional data. ^ The results indicate an existence of a liquidity premium, i.e., less liquid stocks would demand higher rate of return than more liquid stocks. More specifically, a drop of 1 percent in liquidity is associated with a higher rate of return of about 2 to 3 basis points per month. Further investigation reveals that neither the Fama-French three-factor model nor the three-moment CAPM captures the liquidity premium. Finally, the results show that well-known determinants of stock return such as size and book-to-market do not serve as proxy for liquidity. ^ Overall, this dissertation shows that a liquidity premium exists in the stock market and that liquidity is a distinct effect, and is not influenced by the presence of non-market factors, market factors and other stock characteristics.^
Resumo:
With the rapid globalization and integration of world capital markets, more and more stocks are listed in multiple markets. With multi-listed stocks, the traditional measurement of systematic risk, the domestic beta, is not appropriate since it only contain information from one market. ^ Prakash et al. (1993) developed a technique, the global beta, to capture information from multiple markets wherein the stocks are listed. In this study, the global betas are obtained as well as domestic betas for 704 multi-listed stocks from 59 world equity markets. Welch tests show that domestic betas are not equal across markets, therefore, global beta is more appropriate in a global investment setting. ^ The traditional Capital Asset Pricing Models (CAPM) is also tested with regards to both domestic beta and global beta. The results generally support the positive relationship between stocks returns and global beta while tend to reject this relationship between stocks returns and domestic beta. Further tests of International CAPM with domestic beta and global beta strengthen the conclusion.^
Resumo:
The purpose of this study was to gain a better understanding of the foreign direct investment location decision making process through the examination of non-Western investors and their investment strategies in non-traditional markets. This was accomplished through in-depth personal interviews with 50 Overseas Chinese business owners and executives in several different industries from Hong Kong, Singapore, Taiwan, Malaysia, and Thailand about 97 separate investment projects in Southeast and East Asia, including The Philippines, Malaysia, Hong Kong, Singapore, Vietnam, India, Pakistan, South Korea, Australia, Indonesia, Cambodia, Thailand, Burma, Taiwan, and Mainland China.^ Traditional factors utilized in Western models of the foreign direct investment decision making process are reviewed, as well as literature on Asian management systems and the current state of business practices in emerging countries of Southeast and East Asia. Because of the lack of institutionalization in these markets and the strong influences of Confucian and patriarchal value systems on the Overseas Chinese, it was suspected that while some aspects of Western rational economic models of foreign direct investment are utilized, these models are insufficient in this context, and thus are not fully generalizable to the unique conditions of the Overseas Chinese business network in the region without further modification.^ Thus, other factors based on a Confucian value system need to be integrated into these models. Results from the analysis of structured interviews suggest Overseas Chinese businesses rely more heavily on their network and traditional Confucian values than rational economic factors when making their foreign direct investment location decisions in emerging countries in Asia. This effect is moderated by the firm's industry and the age of the firm's owners. ^
Resumo:
Software engineering researchers are challenged to provide increasingly more powerful levels of abstractions to address the rising complexity inherent in software solutions. One new development paradigm that places models as abstraction at the forefront of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code.^ Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process.^ The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources.^ At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM's synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise.^ This dissertation investigates how to decouple the DSK from the MoE and subsequently producing a generic model of execution (GMoE) from the remaining application logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis component of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions.^ This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.^
Resumo:
Software engineering researchers are challenged to provide increasingly more pow- erful levels of abstractions to address the rising complexity inherent in software solu- tions. One new development paradigm that places models as abstraction at the fore- front of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code. Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process. The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources. At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM’s synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise. This dissertation investigates how to decouple the DSK from the MoE and sub- sequently producing a generic model of execution (GMoE) from the remaining appli- cation logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis com- ponent of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions. This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.