5 resultados para interior point methods

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although calorie information at the point-of-purchase at fast food restaurants is proposed as a method to decrease calorie choices and combat obesity, research results have been mixed. Much of the supportive research has weak methodology, and is limited. There is a demonstrated need to develop better techniques to assist consumers to make lower calorie food choices. Eating at fast food restaurants has been positively associated with weight gain. The current study explored the possibility of adding exercise equivalents (EE) (physical activity required to burn off the calories in the food), along with calorie information as a possible way to facilitate lower calorie choice at the point-of-choice in fast food restaurants. This three-group experimental study, in 18-34 year old, overweight and obese women, examines whether presenting caloric information in the form of EE at the point-of-choice at fast food restaurants, will lead to lower calorie food choices compared to presenting simple caloric information or no information at all. Methods. A randomized repeated measures experiment was conducted. Participants ordered a fast food meal from Burger King with menus that contained only the names of the food choices (Lunch 1). One week later (Lunch 2), study participants were given one of three menus that varied: no information, calorie information, or calorie information and EE. Study participants included 62 college aged students. Additionally, the study controlled for dietary restraint by blocking participants, before randomization, to the three groups. Results. A repeated measures analysis of variance was conducted. The study was not sufficiently powered, and while the study was designed to determine large effect sizes, a small effect size of .026, was determined. No significant differences were found in the foods ordered among the various menu conditions. Conclusion. Menu labeling alone might not be enough to reduce calories at the point-of-choice at restaurants. Additional research is necessary to determine if calorie information and EE at the point-of-choice would lead to fewer calories chosen at a meal. Studies should also look at long-term, repeated exposure to determine the effectiveness of calories and or EE at the point-of-choice at fast food restaurants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate and reliable estimation of travel time based on point detector data is needed to support Intelligent Transportation System (ITS) applications. It has been found that the quality of travel time estimation is a function of the method used in the estimation and varies for different traffic conditions. In this study, two hybrid on-line travel time estimation models, and their corresponding off-line methods, were developed to achieve better estimation performance under various traffic conditions, including recurrent congestion and incidents. The first model combines the Mid-Point method, which is a speed-based method, with a traffic flow-based method. The second model integrates two speed-based methods: the Mid-Point method and the Minimum Speed method. In both models, the switch between travel time estimation methods is based on the congestion level and queue status automatically identified by clustering analysis. During incident conditions with rapidly changing queue lengths, shock wave analysis-based refinements are applied for on-line estimation to capture the fast queue propagation and recovery. Travel time estimates obtained from existing speed-based methods, traffic flow-based methods, and the models developed were tested using both simulation and real-world data. The results indicate that all tested methods performed at an acceptable level during periods of low congestion. However, their performances vary with an increase in congestion. Comparisons with other estimation methods also show that the developed hybrid models perform well in all cases. Further comparisons between the on-line and off-line travel time estimation methods reveal that off-line methods perform significantly better only during fast-changing congested conditions, such as during incidents. The impacts of major influential factors on the performance of travel time estimation, including data preprocessing procedures, detector errors, detector spacing, frequency of travel time updates to traveler information devices, travel time link length, and posted travel time range, were investigated in this study. The results show that these factors have more significant impacts on the estimation accuracy and reliability under congested conditions than during uncongested conditions. For the incident conditions, the estimation quality improves with the use of a short rolling period for data smoothing, more accurate detector data, and frequent travel time updates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although calorie information at the point-of-purchase at fast food restaurants is proposed as a method to decrease calorie choices and combat obesity, research results have been mixed. Much of the supportive research has weak methodology, and is limited. There is a demonstrated need to develop better techniques to assist consumers to make lower calorie food choices. Eating at fast food restaurants has been positively associated with weight gain. The current study explored the possibility of adding exercise equivalents (EE) (physical activity required to burn off the calories in the food), along with calorie information as a possible way to facilitate lower calorie choice at the point-of-choice in fast food restaurants. This three-group experimental study, in 18-34 year old, overweight and obese women, examines whether presenting caloric information in the form of EE at the point-of-choice at fast food restaurants, will lead to lower calorie food choices compared to presenting simple caloric information or no information at all. Methods: A randomized repeated measures experiment was conducted. Participants ordered a fast food meal from Burger King with menus that contained only the names of the food choices (Lunch 1). One week later (Lunch 2), study participants were given one of three menus that varied: no information, calorie information, or calorie information and EE. Study participants included 62 college aged students. Additionally, the study controlled for dietary restraint by blocking participants, before randomization, to the three groups. Results: A repeated measures analysis of variance was conducted. The study was not sufficiently powered, and while the study was designed to determine large effect sizes, a small effect size of .026, was determined. No significant differences were found in the foods ordered among the various menu conditions. Conclusion: Menu labeling alone might not be enough to reduce calories at the point-of-choice at restaurants. Additional research is necessary to determine if calorie information and EE at the point-of-choice would lead to fewer calories chosen at a meal. Studies should also look at long-term, repeated exposure to determine the effectiveness of calories and or EE at the point-of-choice at fast food restaurants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.