6 resultados para intel processor

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fueled by increasing human appetite for high computing performance, semiconductor technology has now marched into the deep sub-micron era. As transistor size keeps shrinking, more and more transistors are integrated into a single chip. This has increased tremendously the power consumption and heat generation of IC chips. The rapidly growing heat dissipation greatly increases the packaging/cooling costs, and adversely affects the performance and reliability of a computing system. In addition, it also reduces the processor's life span and may even crash the entire computing system. Therefore, dynamic thermal management (DTM) is becoming a critical problem in modern computer system design. Extensive theoretical research has been conducted to study the DTM problem. However, most of them are based on theoretically idealized assumptions or simplified models. While these models and assumptions help to greatly simplify a complex problem and make it theoretically manageable, practical computer systems and applications must deal with many practical factors and details beyond these models or assumptions. The goal of our research was to develop a test platform that can be used to validate theoretical results on DTM under well-controlled conditions, to identify the limitations of existing theoretical results, and also to develop new and practical DTM techniques. This dissertation details the background and our research efforts in this endeavor. Specifically, in our research, we first developed a customized test platform based on an Intel desktop. We then tested a number of related theoretical works and examined their limitations under the practical hardware environment. With these limitations in mind, we developed a new reactive thermal management algorithm for single-core computing systems to optimize the throughput under a peak temperature constraint. We further extended our research to a multicore platform and developed an effective proactive DTM technique for throughput maximization on multicore processor based on task migration and dynamic voltage frequency scaling technique. The significance of our research lies in the fact that our research complements the current extensive theoretical research in dealing with increasingly critical thermal problems and enabling the continuous evolution of high performance computing systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multipurpose open architecture motion control system was developed with three platforms for control and monitoring. The Visual Basic user interface communicated with the operator and gave instructions to the electronic components. The first platform had a BASIC Stamp based controller and three stepping motors. The second platform had a controller, amplifiers and two DC servomotors. The third platform had a DSP module. In this study, each platform was used on machine tools either to move the table or to evaluate the incoming signal. The study indicated that by using advanced microcontrollers, which use high-level languages, motor controllers, DSPs (Digital Signal Processor) and microcomputers, the motion control of different systems could be realized in a short time. Although, the proposed systems had some limitations, their jobs were performed effectively. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buffered crossbar switches have recently attracted considerable attention as the next generation of high speed interconnects. They are a special type of crossbar switches with an exclusive buffer at each crosspoint of the crossbar. They demonstrate unique advantages over traditional unbuffered crossbar switches, such as high throughput, low latency, and asynchronous packet scheduling. However, since crosspoint buffers are expensive on-chip memories, it is desired that each crosspoint has only a small buffer. This dissertation proposes a series of practical algorithms and techniques for efficient packet scheduling for buffered crossbar switches. To reduce the hardware cost of such switches and make them scalable, we considered partially buffered crossbars, whose crosspoint buffers can be of an arbitrarily small size. Firstly, we introduced a hybrid scheme called Packet-mode Asynchronous Scheduling Algorithm (PASA) to schedule best effort traffic. PASA combines the features of both distributed and centralized scheduling algorithms and can directly handle variable length packets without Segmentation And Reassembly (SAR). We showed by theoretical analysis that it achieves 100% throughput for any admissible traffic in a crossbar with a speedup of two. Moreover, outputs in PASA have a large probability to avoid the more time-consuming centralized scheduling process, and thus make fast scheduling decisions. Secondly, we proposed the Fair Asynchronous Segment Scheduling (FASS) algorithm to handle guaranteed performance traffic with explicit flow rates. FASS reduces the crosspoint buffer size by dividing packets into shorter segments before transmission. It also provides tight constant performance guarantees by emulating the ideal Generalized Processor Sharing (GPS) model. Furthermore, FASS requires no speedup for the crossbar, lowering the hardware cost and improving the switch capacity. Thirdly, we presented a bandwidth allocation scheme called Queue Length Proportional (QLP) to apply FASS to best effort traffic. QLP dynamically obtains a feasible bandwidth allocation matrix based on the queue length information, and thus assists the crossbar switch to be more work-conserving. The feasibility and stability of QLP were proved, no matter whether the traffic distribution is uniform or non-uniform. Hence, based on bandwidth allocation of QLP, FASS can also achieve 100% throughput for best effort traffic in a crossbar without speedup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today, most conventional surveillance networks are based on analog system, which has a lot of constraints like manpower and high-bandwidth requirements. It becomes the barrier for today's surveillance network development. This dissertation describes a digital surveillance network architecture based on the H.264 coding/decoding (CODEC) System-on-a-Chip (SoC) platform. The proposed digital surveillance network architecture includes three major layers: software layer, hardware layer, and the network layer. The following outlines the contributions to the proposed digital surveillance network architecture. (1) We implement an object recognition system and an object categorization system on the software layer by applying several Digital Image Processing (DIP) algorithms. (2) For better compression ratio and higher video quality transfer, we implement two new modules on the hardware layer of the H.264 CODEC core, i.e., the background elimination module and the Directional Discrete Cosine Transform (DDCT) module. (3) Furthermore, we introduce a Digital Signal Processor (DSP) sub-system on the main bus of H.264 SoC platforms as the major hardware support system for our software architecture. Thus we combine the software and hardware platforms to be an intelligent surveillance node. Lab results show that the proposed surveillance node can dramatically save the network resources like bandwidth and storage capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system's high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level. ^ In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization. ^ The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.^