6 resultados para inertia
em Digital Commons at Florida International University
Resumo:
A debate is currently prevalent among the structural engineers regarding the use of cracked versus un-cracked moment of inertia of the structural elements in analyzing and designing tall concrete buildings. (The basic definition of a tall building, according to the Journal of Structural Design of Tall Buildings Vol. 13. No. 5, 2004 is a structure that is equal to or greater than 160 feet in height, or 6 stories or greater.) The controversy is the result of differing interpretations of certain ACI (American Concrete Institute) code provisions. The issue is whether designers should use cracked moment of inertia in order to estimate lateral deflection and whether the computed lateral deflection should be used to carry out subsequent second-order analysis (analysis considering the effect of first order lateral deflections on bending moment and shear stresses). On one hand, bending moments and shear forces estimated based on un-cracked moment of inertia of the sections may result in conservative designs by overestimating moments and shears. On the other hand, lateral deflections may be underestimated due to the same analyses resulting in unsafe designs.
Resumo:
We examined the anatomy of expanding, mature, and senescing leaves of tropical plants for the presence of red pigments: anthocyanins and betacyanins. We studied 463 species in total, 370 genera, belonging to 94 families. This included 21 species from five families in the Caryophyllales, where betacyanins are the basis for red color. We also included 14 species of ferns and gymnosperms in seven families and 29 species with undersurface coloration at maturity. We analyzed 399 angiosperm species (74 families) for factors (especially developmental and evolutionary) influencing anthocyanin production during expansion and senescence. During expansion, 44.9% produced anthocyanins and only 13.5% during senescence. At both stages, relatively few patterns of tissue distributions developed, primarily in the mesophyll, and very few taxa produced anthocyanins in dermal and ground tissue simultaneously. Of the 35 species producing anthocyanins both in development and senescence, most had similar cellular distributions. Anthocyanin distributions were identical in different developing leaves of three heteroblastic taxa. Phylogeny has influenced the distribution of anthocyanins in the epidermis and mesophyll of expanding leaves and the palisade parenchyma during senescence, although these influences are not strong. Betacyanins appear to have similar distributions in leaves of taxa within the Caryophyllales and, perhaps, similar functions. The presence of anthocyanins in the mesophyll of so many species is inconsistent with the hypothesis of protection against UV damage or fungal pathogens, and the differing tissue distributions indicate that the pigments may function in different ways, as in photoprotection and freeradical scavenging.
Resumo:
An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA's Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth's primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan's atmosphere, the ISM, and cold celestial bodies.<.
Resumo:
Lateral load distribution factor is a key factor for designing and analyzing curved steel I-girder bridges. In this dissertation, the effects of various parameters on moment and shear distribution for curved steel I-girder bridges were studied using the Finite Element Method (FEM). The parameters considered in the study were: radius of curvature, girder spacing, overhang, span length, number of girders, ratio of girder stiffness to overall bridge stiffness, slab thickness, girder longitudinal stiffness, cross frame spacing, and girder torsional inertia. The variations of these parameters were based on the statistical analysis of the real bridge database, which was created by extracting data from existing or newly designed curved steel I-girder bridge plans collected all over the nation. A hypothetical bridge superstructure model that was made of all the mean values of the data was created and used for the parameter study. ^ The study showed that cross frame spacing and girder torsional inertia had negligible effects. Other parameters had been identified as key parameters. Regression analysis was conducted based on the FEM analysis results and simplified formulas for predicting positive moment, negative moment, and shear distribution factors were developed. Thirty-three real bridges were analyzed using FEM to verify the formulas. The ratio of the distribution factor obtained from the formula to the one obtained from the FEM analysis, which was referred to as the g-ratio, was examined. The results showed that the standard deviation of the g-ratios was within 0.04 to 0.06 and the mean value of the g-ratios was greater than unity by one standard deviation. This indicates that the formulas are conservative in most cases but not overly conservative. The final formulas are similar in format to the current American Association of State Highway and Transportation Officials (AASHTO) Load Resistance and Factor Design (LRFD) specifications. ^ The developed formulas were compared with other simplified methods. The outcomes showed that the proposed formulas had the most accurate results among all methods. ^ The formulas developed in this study will assist bridge engineers and researchers in predicting the actual live load distribution in horizontally curved steel I-girder bridges. ^
Resumo:
One of the major problems in the analysis of beams with Moment of Inertia varying along their length, is to find the Fixed End Moments, Stiffness, and Carry-Over Factors. In order to determine Fixed End Moments, it is necessary to consider the non-prismatic member as integrated by a large number of small sections with constant Moment of Inertia, and to find the M/EI values for each individual section. This process takes a lot of time from Designers and Structural Engineers. The object of this thesis is to design a computer program to simplify this repetitive process, obtaining rapidly and effectively the Final Moments and Shears in continuous non-prismatic Beams. For this purpose the Column Analogy and the Moment Distribution Methods of Professor Hardy Cross have been utilized as the principles toward the methodical computer solutions. The program has been specifically designed to analyze continuous beams of a maximum of four spans of any length, integrated by symmetrical members with rectangular cross sections and with rectilinear variation of the Moment of Inertia. Any load or combination of uniform and concentrated loads must be considered. Finally sample problems will be solved with the new Computer Program and with traditional systems, to determine the accuracy and applicability of the Program.
Resumo:
An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA’s Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth’s primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan’s atmosphere, the ISM, and cold celestial bodies.