7 resultados para idrossiapatite, cranioplastica, protesi, biomimetiche, microonde, DoE

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lot of mixed vitrified waste exists at DOE sites, which contain valuable metal having great potential for being reused in industry. Of these useful metals, steel constitutes more than 45% of the volume. Using the differential centrifugal separation technology, steel is separated by using remote melting of the mixed waste. The high costs involved are directly proportional to the time involved in separation of the steel from the mixed waste. This is determined by using similitude principles. Having obtained a solidified steel ingot by melting, it is essential to determine the decontaminated portions of the ingot that can be released to industry. Two parameters representing measures of separation are proposed—the Centrifugal Fluid Separation Number and the Thermal Separation Number. Regression correlations are determined to express the estimated time of separation. Experimental analysis of solidified ingots has shown that when the Thermal Separation Number is less than 1700 the steel contains little or no trace of glass. This result can be used to recycle steel back to industry. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the remediation of burial grounds at the US Department of Energy's (DOE's) Hanford Site in Washington State, the dispersion of contaminated soil particles and dust is an issue that is faced by site workers on a daily basis. This contamination problem is even more of a concern when one takes into account the semi-arid characteristics of the region where the site is located. To mitigate this problem, workers at the site use a variety of engineered methods to minimize the dispersion of contaminated soil and dust (i.e. use of water and/or suppression agents that stabilizes the soil prior to soil excavation, segregation, and removal activities). A primary contributor to the dispersion of contaminated soil and dust is wind soil erosion. The erosion process occurs when the wind speed exceeds a certain threshold value which depends on a number of factors including wind force loading, particle size, surface soil moisture, and the geometry of the soil. Thus under these circumstances, the mobility of contaminated soil and generation and dispersion of particulate matter are significantly influenced by these parameters. This dependence of soil and dust movement on threshold shear velocity, fixative dilution and/or application rates, soil moisture content, and soil geometry were studied for Hanford's sandy soil through a series of wind tunnel experiments, laboratory experiments and theoretical analysis. In addition, the behavior of plutonium (Pu) powder contamination in the soil was studied by introducing a Pu simulant (cerium oxide). The results showed that soil dispersion and PM10 concentrations decreased with increasing soil moisture. Also, it was shown that the mobility of the soil was affected by increasing wind velocity. It was demonstrated that the use of fixative products greatly decreased the amount of soil and PM10 concentrations when exposed to varying wind conditions. In addition, it was shown that geometry of the soil sample affected the velocity profile and calculation of roughness surface coefficient when comparing round and flat soil samples. Finally, threshold shear velocities were calculated for soil with flat surface and their dependency on surface soil moisture was demonstrated. A theoretical framework was developed to explain these dependencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. ^ Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. ^ Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building's energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. ^ In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. ^ An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The U.S. Department of Energy (DOE) needs a design basis to properly design a PJM and ventilation systems for the Waste Treatment Plant vessels. In order to meet DOE's needs for proper ventilation and PJM design technologies, Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) has studied the properties for gas holdup in selected non Newtonian fluids with physicochemical properties comparable to nuclear waste. The primary purpose of this research was to study the holdup properties of selected non - Newtonian simulants and quantify the level of gas holdup in selected simulants using continuous argon injection in five gallons vessel. Gas holdup tests involved the injection of gas bubbles in simulant waste in scaled prototypic vessels. The holdup was measured as a function of injection rate in the vessel. Tests were performed with both Laponite, Clay 12%, Clay 27% and Qard 13.5. This work showed that the percentage of holdup was about 3% for all simulants despite the significant differences in rheology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building’s energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Release of uranium from Na-autunite, an artificial mineral created as a result of polyphosphate injection in the subsurface at the DOE Hanford Site, takes place during slow dissolution of the mineral structure. Stability information of the uranyl-phosphate phases is limited to conditions involving pH, temperature, and a few aqueous organic materials. The carbonate ion, which creates very strong complexes with uranium, is the predominant ion in the groundwater composition. The polyphosphate technology with the formation of autunite was identified as the most feasible remediation strategy to sequester uranium in contaminated groundwater and soil in situ. The objectives of the experimental work were (i) to quantify the effect of bicarbonate on the stability of synthetic sodium meta-autunite created as a result of uranium stabilization through polyphosphate injection, (ii) calculate the kinetic rate law parameters of the uranium release from Na-autunite during dissolution, and (iii) to compare the process parameters with those obtained for natural calcium meta-autunite. Experiments were conducted using SPTF apparatus, which consists of syringe pumps for controlling flow rate, Teflon reactors and a heating/cooling system. 0.25 grams of synthetic Na-autunite was placed in the reactor and buffer solutions with varying bicarbonate concentrations (0.0005 to 0.003 M) at different pH (6 - 11) were pumped through the reactors. Experiments were conducted at four different temperatures in the range of 5 - 60oC. It was concluded that the rate of release of uranium from synthetic Na-autunite is directly correlated to the bicarbonate concentration. The rate of release of uranium increased from 1.90 x 10-12 at pH 6 to 2.64 x 10-10 (mol m-2 s-1) at pH 11 at 23oC over the bicarbonate concentration range tested. The activation energy values were invariant with the change in the bicarbonate concentration; however, pH is shown to influence the activation energy values. Uranyl hydroxides and uranyl carbonates complexes helped accelerate the dissolution of autunite mineral.