2 resultados para hydration

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Accurately determining hydration status is a preventative measure for exertional heat illnesses (EHI). Objective: To determine the validity of various field measures of urine specific gravity (Usg) compared to laboratory instruments. Design: Observational research design to compare measures of hydration status: urine reagent strips (URS) and a urine color (Ucol) chart to a refractometer. Setting: We utilized the athletic training room of a Division I-A collegiate American football team. Participants: Trial 1 involved urine samples of 69 veteran football players (age=20.1+1.2yr; body mass=229.7+44.4lb; height=72.2+2.1in). Trial 2 involved samples from 5 football players (age=20.4+0.5yr; body mass=261.4+39.2lb; height=72.3+2.3in). Interventions: We administered the Heat Illness Index Score (HIIS) Risk Assessment, to identify athletes at-risk for EHI (Trial 1). For individuals “at-risk” (Trial 2), we collected urine samples before and after 15 days of pre-season “two-a-day” practices in a hot, humid environment(mean on-field WBGT=28.84+2.36oC). Main Outcome Measures: Urine samples were immediately analyzed for Usg using a refractometer, Diascreen 7® (URS1), Multistix® (URS2), and Chemstrip10® (URS3). Ucol was measured using Ucol chart. We calculated descriptive statistics for all main measures; Pearson correlations to assess relationships between the refractometer, each URS, and Ucol, and transformed Ucol data to Z-scores for comparison to the refractometer. Results: In Trial 1, we found a moderate relationship (r=0.491, p<.01) between URS1 (1.020+0.006μg) and the refractometer (1.026+0.010μg). In Trial 2, we found marked relationships for Ucol (5.6+1.6shades, r=0.619, p<0.01), URS2 (1.019+0.008μg, r=0.712, p<0.01), and URS3 (1.022+0.007μg, r=0.689, p<0.01) compared to the refractometer (1.028+0.008μg). Conclusions: Our findings suggest that URS were inconsistent between manufacturers, suggesting practitioners use the clinical refractometer to accurately determine Usg and monitor hydration status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a potential biocatalyst for use in asymmetric synthesis. The mechanisms of CPO catalysis are therefore of interest. The halogenation reaction, one of several chemical reactions that CPO catalyzes, is not fully understood and is the subject of this dissertation. The mechanism by which CPO catalyzes halogenation is disputed. It has been postulated that halogenation of substrates occurs at the active site. Alternatively, it has been proposed that hypochlorous acid, produced at the active site via oxidation of chloride, is released prior to reaction, so that halogenation occurs in solution. The free-solution mechanism is supported by the observation that halogenation of most substrates often occurs non-stereospecifically. On the other hand, the enzyme-bound mechanism is supported by the observation that some large substrates undergo halogenation stereospecifically. The major purpose of this research is to compare chlorination of the substrate β-cyclopentanedione in the two environments. One study was of the reaction with limited hydration because such a level of hydration is typical of the active site. For this work, a purely quantum mechanical approach was used. To model the aqueous environment, the limited hydration environment approach is not appropriate. Instead, reaction precursor conformations were obtained from a solvated molecular dynamics simulation, and reaction of potentially reactive molecular encounters was modeled with a hybrid quantum mechanical/molecular mechanical approach. Extensive work developing parameters for small molecules was pre-requisite for the molecular dynamics simulation. It is observed that a limited and optimized (active-site-like) hydration environment leads to a lower energetic barrier than the fully solvated model representative of the aqueous environment at room temperature, suggesting that the stable water network near the active site is likely to facilitate the chlorination mechanism. The influence of the solvent environment on the reaction barrier is critical. It is observed that stabilization of the catalytic water by other solvent molecules lowers the barrier for keto-enol tautomerization. Placement of water molecules is more important than the number of water molecules in such studies. The fully-solvated model demonstrates that reaction proceeds when the instantaneous dynamical water environment is close to optimal for stabilizing the transition state.