4 resultados para high potential
em Digital Commons at Florida International University
Resumo:
A global corporation values both profitability and social acceptance; its units mutually negotiate governance and represent a highly interdependent network where centers of excellence and high-potential employees are identified regardless of geographic locations. These companies try to build geocentric, or “world oriented” (Marquardt, 1999, p. 20), organizational cultures. Such culture “transcends cultural differences and establishes ‘beacons’ – values and attitudes – that are comprehensive and compelling” (Kets de Vries & Florent-Treacy, 2002, p. 299) for all employees, regardless of their national origins. Creating a geocentric organizational culture involves transforming each employee’s mindset, beliefs, and behaviors so that he/she can become “a world citizen in spite of having a national identity” (Marquardt, 1999, p. 47). The purpose of this phenomenological study was to explore how employees with different national identities experience a geocentric organizational culture of a global corporation. Phenomenological research aims to understand “how people experience some phenomenon—how they perceive it, describe it, feel about it, judge it, remember it, make sense of it, and talk about it with others” (Patton, 2002, p. 104). Twelve participants were selected using criteria, convenience, and snow-ball sampling strategies. A semi-structured interview guide was used to collect data. Data were analyzed inductively, using Moustakas’s (1994) Modification of the Stevick-Colaizzi-Keen Method of Analysis of Phenomenological Data. The participants in this study experienced a geocentric organizational culture of a global corporation as on in which they felt connected, valued, and growing personally and professionally. The participants felt connected to the companies via business goals and social responsibility. The participants felt valued by the company because their creativity was welcomed and they could contribute to the corporation certain unique knowledge of the culture and language of their native countries. The participants felt growing personally and professionally due to the professional development opportunities, cross-cultural awareness, and perspective consciousness. Based on the findings from this study, a model of a geocentric organizational culture of a global corporation: An employee perspective is proposed. Implications for research and practice conclude this study.
Resumo:
Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines.
Resumo:
The discovery of High-Temperature Superconductors (HTSCs) has spurred the need for the fabrication of superconducting electronic devices able to match the performance of today's semiconductor devices. While there are several HTSCs in use today, YBaCuO7-x (YBCO) is the better characterized and more widely used material for small electronic applications. This thesis explores the fabrication of a Two-Terminal device with a superconductor and a painted on electrode as the terminals and a ferroelectric, BaTiO 3 (BTO), in between. The methods used to construct such a device and the challenges faced with the fabrication of a viable device will be examined. The ferroelectric layer of the devices that proved adequate for use were poled by the application of an electric field. Temperature Bias Poling used an applied field of 105V/cm at a temperature of approximately 135*C. High Potential Poling used an applied field of 106V/cm at room temperature (20*C). The devices were then tested for a change in their superconducting critical temperature, Tc. A shift of 1-2K in the Tc(onset) of YBCO was observed for Temperature Bias Poling and a shift of 2-6K for High Potential Poling. These are the first reported results of the field effect using BTO on YBCO. The mechanism involved in the shifting of Tc will be discussed along with possible applications.
Resumo:
Background: Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act. Results: We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p < 0.01). Among the main categories of biological processes found differentially expressed were transport, translation, response to stimulus, oxidation-reduction processes, and apoptosis. We found that the transcriptional profiles did not correspond to the genotype of the colony characterized using either an intron of the carbonic anhydrase gene or microsatellite loci markers. Conclusion: Our results provide evidence of the high inter-colony variation in A. millepora at the transcriptomic level grown under a common garden and without a correspondence with genotypic identity. This finding brings to our attention the importance of taking into account natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.