5 resultados para high electron mobility transistors
em Digital Commons at Florida International University
Resumo:
Electronic noise has been investigated in AlxGa1−x N/GaN Modulation-Doped Field Effect Transistors (MODFETs) of submicron dimensions, grown for us by MBE (Molecular Beam Epitaxy) techniques at Virginia Commonwealth University by Dr. H. Morkoç and coworkers. Some 20 devices were grown on a GaN substrate, four of which have leads bonded to source (S), drain (D), and gate (G) pads, respectively. Conduction takes place in the quasi-2D layer of the junction (xy plane) which is perpendicular to the quantum well (z-direction) of average triangular width ∼3 nm. A non-doped intrinsic buffer layer of ∼5 nm separates the Si-doped donors in the AlxGa1−xN layer from the 2D-transistor plane, which affords a very high electron mobility, thus enabling high-speed devices. Since all contacts (S, D, and G) must reach through the AlxGa1−xN layer to connect internally to the 2D plane, parallel conduction through this layer is a feature of all modulation-doped devices. While the shunting effect may account for no more than a few percent of the current IDS, it is responsible for most excess noise, over and above thermal noise of the device. ^ The excess noise has been analyzed as a sum of Lorentzian spectra and 1/f noise. The Lorentzian noise has been ascribed to trapping of the carriers in the AlxGa1−xN layer. A detailed, multitrapping generation-recombination noise theory is presented, which shows that an exponential relationship exists for the time constants obtained from the spectral components as a function of 1/kT. The trap depths have been obtained from Arrhenius plots of log (τT2) vs. 1000/T. Comparison with previous noise results for GaAs devices shows that: (a) many more trapping levels are present in these nitride-based devices; (b) the traps are deeper (farther below the conduction band) than for GaAs. Furthermore, the magnitude of the noise is strongly dependent on the level of depletion of the AlxGa1−xN donor layer, which can be altered by a negative or positive gate bias VGS. ^ Altogether, these frontier nitride-based devices are promising for bluish light optoelectronic devices and lasers; however, the noise, though well understood, indicates that the purity of the constituent layers should be greatly improved for future technological applications. ^
Resumo:
This study examined the effects of student mobility and educational enrollment experiences on academic achievement. The educational progress, school enrollments and transfers of inner-city elementary students were tracked over a four-year period. Student achievement was measured by criterion-referenced reading tests administered in the second semester of the third grade. It further analyzed the degree to which the switch to different basal reading textbooks interrupted the continuity of education thereby contributing to the detrimental effects of intra-district mobility. ^ Mobility histories of 2,913 third grade students were collected to evaluate the number of times each student entered or withdrew from a Miami-Dade County Public School beginning in August 2000 through March 2004, and distinguished between transfers that occurred during the academic school year and those that occurred during summer months. Data were analyzed using Pearson correlations and multiple regressions to determine if school mobility contributed to performance on the Florida Comprehensive Assessment Third Grade Reading Test (FCAT). Transferring from one school to another was found to have a significant negative impact on student test scores. Transfers within the academic school year were more detrimental than transfers that occurred during the summer months. Third grade students who transferred into schools that used the same reading textbook series were found to have significantly higher FCAT reading scores than third graders who transferred into schools that used different reading textbooks. ^ The effects of mobility rates on overall school performance were also examined. Data was collected on 124 Title I elementary schools to determine the degree to which mobility affected school accountability scores. Title I schools with high student mobility rates had significantly lower accountability scores than schools with lower student mobility rates. ^ The results of this study highlight the impact of education and housing policy and imply a need for programs and practices that promote stability in the early elementary years. ^
Resumo:
The aim of this research was to demonstrate a high current and stable field emission (FE) source based on carbon nanotubes (CNTs) and electron multiplier microchannel plate (MCP) and design efficient field emitters. In recent years various CNT based FE devices have been demonstrated including field emission displays, x-ray source and many more. However to use CNTs as source in high powered microwave (HPM) devices higher and stable current in the range of few milli-amperes to amperes is required. To achieve such high current we developed a novel technique of introducing a MCP between CNT cathode and anode. MCP is an array of electron multipliers; it operates by avalanche multiplication of secondary electrons, which are generated when electrons strike channel walls of MCP. FE current from CNTs is enhanced due to avalanche multiplication of secondary electrons and in addition MCP also protects CNTs from irreversible damage during vacuum arcing. Conventional MCP is not suitable for this purpose due to the lower secondary emission properties of their materials. To achieve higher and stable currents we have designed and fabricated a unique ceramic MCP consisting of high SEY materials. The MCP was fabricated utilizing optimum design parameters, which include channel dimensions and material properties obtained from charged particle optics (CPO) simulation. Child Langmuir law, which gives the optimum current density from an electron source, was taken into account during the system design and experiments. Each MCP channel consisted of MgO coated CNTs which was chosen from various material systems due to its very high SEY. With MCP inserted between CNT cathode and anode stable and higher emission current was achieved. It was ∼25 times higher than without MCP. A brighter emission image was also evidenced due to enhanced emission current. The obtained results are a significant technological advance and this research holds promise for electron source in new generation lightweight, efficient and compact microwave devices for telecommunications in satellites or space applications. As part of this work novel emitters consisting of multistage geometry with improved FE properties were was also developed.
Resumo:
Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes. Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ∼5.7 cm2/V·s at low operation voltage of <5 V and a low turn-on voltage of ∼0.5 V with a sub threshold swing of ∼85 mV/decade. Bottom gated FET fabricated from ZNWs exhibit a very high on-to-off ratio (∼106) and mobility (∼28 cm2/V·s). A bottom gated FET showed large hysteresis of ∼5.0 to 8.0 V which was significantly reduced to ∼1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ∼46% and a minimum detection limit of ∼1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases. Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene/polymer film exhibited a high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ∼88.80% light transmittance and ∼1.1742Ω/sq k sheet resistance. The application of a graphene/polymer film as a flexible and transparent electrode for field emission displays was demonstrated.
Resumo:
The mammalian high mobility group protein AT-hook 2 (HMGA2) is a small transcriptional factor involved in cell development and oncogenesis. It contains three "AT-hook" DNA binding domains, which specifically recognize the minor groove of AT-rich DNA sequences. It also has an acidic C-terminal motif. Previous studies showed that HMGA2 mediates all its biological effects through interactions with AT-rich DNA sequences in the promoter regions. In this dissertation, I used a variety of biochemical and biophysical methods to examine the physical properties of HMGA2 and to further investigate HMGA2's interactions with AT-rich DNA sequences. The following are three avenues perused in this study: (1) due to the asymmetrical charge distribution of HMGA2, I have developed a rapid procedure to purify HMGA2 in the milligram range. Preparation of large amounts of HMGA2 makes biophysical studies possible; (2) Since HMGA2 binds to different AT-rich sequences in the promoter regions, I used a combination of isothermal titration calorimetry (ITC) and DNA UV melting experiment to characterize interactions of HMGA2 with poly(dA-dT) 2 and poly(dA)poly(dT). My results demonstrated that (i) each HMGA2 molecule binds to 15 AT bp; (ii) HMGA2 binds to both AT DNAs with very high affinity. However, the binding reaction of HMGA2 to poly(dA-dT) 2 is enthalpy-driven and the binding reaction of HMGA2 with poly(dA)poly(dT) is entropy-driven; (iii) the binding reactions are strongly depended on salt concentrations; (3) Previous studies showed that HMGA2 may have sequence specificity. In this study, I used a PCR-based SELEX procedure to examine the DNA binding specificity of HMGA2. Two consensus sequences for HMGA2 have been identified: 5'-ATATTCGCGAWWATT-3' and 5'-ATATTGCGCAWWATT-3', where W represents A or T. These consensus sequences have a unique feature: the first five base pairs are AT-rich, the middle four to five base pairs are GC-rich, and the last five to six base pairs are AT-rich. All three segments are critical for high affinity binding. Replacing either one of the AT-rich sequences to a non-AT-rich sequence causes at least 100-fold decrease in the binding affinity. Intriguingly, if the GC-segment is substituted by an AT-rich segment, the binding affinity of HMGA2 is reduced approximately 5-fold. Identification of the consensus sequences for HMGA2 represents an important step towards finding its binding sites within the genome.