9 resultados para hierarchical hidden Markov model
em Digital Commons at Florida International University
Resumo:
With the recent explosion in the complexity and amount of digital multimedia data, there has been a huge impact on the operations of various organizations in distinct areas, such as government services, education, medical care, business, entertainment, etc. To satisfy the growing demand of multimedia data management systems, an integrated framework called DIMUSE is proposed and deployed for distributed multimedia applications to offer a full scope of multimedia related tools and provide appealing experiences for the users. This research mainly focuses on video database modeling and retrieval by addressing a set of core challenges. First, a comprehensive multimedia database modeling mechanism called Hierarchical Markov Model Mediator (HMMM) is proposed to model high dimensional media data including video objects, low-level visual/audio features, as well as historical access patterns and frequencies. The associated retrieval and ranking algorithms are designed to support not only the general queries, but also the complicated temporal event pattern queries. Second, system training and learning methodologies are incorporated such that user interests are mined efficiently to improve the retrieval performance. Third, video clustering techniques are proposed to continuously increase the searching speed and accuracy by architecting a more efficient multimedia database structure. A distributed video management and retrieval system is designed and implemented to demonstrate the overall performance. The proposed approach is further customized for a mobile-based video retrieval system to solve the perception subjectivity issue by considering individual user's profile. Moreover, to deal with security and privacy issues and concerns in distributed multimedia applications, DIMUSE also incorporates a practical framework called SMARXO, which supports multilevel multimedia security control. SMARXO efficiently combines role-based access control (RBAC), XML and object-relational database management system (ORDBMS) to achieve the target of proficient security control. A distributed multimedia management system named DMMManager (Distributed MultiMedia Manager) is developed with the proposed framework DEMUR; to support multimedia capturing, analysis, retrieval, authoring and presentation in one single framework.
Resumo:
There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness. Evidence-based patient-centered Brief Motivational Interviewing (BMI) interven- tions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary. Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems. To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].
Resumo:
Background Type 2 diabetes mellitus (T2DM) is increasingly becoming a major public health problem worldwide. Estimating the future burden of diabetes is instrumental to guide the public health response to the epidemic. This study aims to project the prevalence of T2DM among adults in Syria over the period 2003–2022 by applying a modelling approach to the country’s own data. Methods Future prevalence of T2DM in Syria was estimated among adults aged 25 years and older for the period 2003–2022 using the IMPACT Diabetes Model (a discrete-state Markov model). Results According to our model, the prevalence of T2DM in Syria is projected to double in the period between 2003 and 2022 (from 10% to 21%). The projected increase in T2DM prevalence is higher in men (148%) than in women (93%). The increase in prevalence of T2DM is expected to be most marked in people younger than 55 years especially the 25–34 years age group. Conclusions The future projections of T2DM in Syria put it amongst countries with the highest levels of T2DM worldwide. It is estimated that by 2022 approximately a fifth of the Syrian population aged 25 years and older will have T2DM.
Resumo:
An emergency is a deviation from a planned course of events that endangers people, properties, or the environment. It can be described as an unexpected event that causes economic damage, destruction, and human suffering. When a disaster happens, Emergency Managers are expected to have a response plan to most likely disaster scenarios. Unlike earthquakes and terrorist attacks, a hurricane response plan can be activated ahead of time, since a hurricane is predicted at least five days before it makes landfall. This research looked into the logistics aspects of the problem, in an attempt to develop a hurricane relief distribution network model. We addressed the problem of how to efficiently and effectively deliver basic relief goods to victims of a hurricane disaster. Specifically, where to preposition State Staging Areas (SSA), which Points of Distributions (PODs) to activate, and the allocation of commodities to each POD. Previous research has addressed several of these issues, but not with the incorporation of the random behavior of the hurricane's intensity and path. This research presents a stochastic meta-model that deals with the location of SSAs and the allocation of commodities. The novelty of the model is that it treats the strength and path of the hurricane as stochastic processes, and models them as Discrete Markov Chains. The demand is also treated as stochastic parameter because it depends on the stochastic behavior of the hurricane. However, for the meta-model, the demand is an input that is determined using Hazards United States (HAZUS), a software developed by the Federal Emergency Management Agency (FEMA) that estimates losses due to hurricanes and floods. A solution heuristic has been developed based on simulated annealing. Since the meta-model is a multi-objective problem, the heuristic is a multi-objective simulated annealing (MOSA), in which the initial solution and the cooling rate were determined via a Design of Experiments. The experiment showed that the initial temperature (T0) is irrelevant, but temperature reduction (δ) must be very gradual. Assessment of the meta-model indicates that the Markov Chains performed as well or better than forecasts made by the National Hurricane Center (NHC). Tests of the MOSA showed that it provides solutions in an efficient manner. Thus, an illustrative example shows that the meta-model is practical.
Resumo:
The Ellison Executive Mentoring Inclusive Community Building (ICB) Model is a paradigm for initiating and implementing projects utilizing executives and professionals from a variety of fields and industries, university students, and pre-college students. The model emphasizes adherence to ethical values and promotes inclusiveness in community development. It is a hierarchical model in which actors in each succeeding level of operation serve as mentors to the next. Through a three-step process—content, process, and product—participants must be trained with this mentoring and apprenticeship paradigm in conflict resolution, and they receive sensitivity and diversity training through an interactive and dramatic exposition. ^ The content phase introduces participants to the model's philosophy, ethics, values and methods of operation. The process used to teach and reinforce its precepts is the mentoring and apprenticeship activities and projects in which the participants engage and whose end product demonstrates their knowledge and understanding of the model's concepts. This study sought to ascertain from the participants' perspectives whether the model's mentoring approach is an effective means of fostering inclusiveness, based upon their own experiences in using it. The research utilized a qualitative approach and included data from field observations, individual and group interviews, and written accounts of participants' attitudes. ^ Participants complete ICB projects utilizing The Ellison Model as a method of development and implementation. They generally perceive that the model is a viable tool for dealing with diversity issues whether at work, at school, or at home. The projects are also instructional in that whether participants are mentored or serve as apprentices, they gain useful skills and knowledge about their careers. Since the model is relatively new, there is ample room for research in a variety of areas including organizational studies to determine its effectiveness in combating problems related to various kinds of discrimination. ^
Resumo:
This quantitative study investigated the predictive relationships and interaction between factors such as work-related social behaviors (WRSB), self-determination (SD), person-job congruency (PJC), job performance (JP), job satisfaction (JS), and job retention (JR). A convenience sample of 100 working adults with MR were selected from supported employment agencies. Data were collected using a survey test battery of standardized instruments. The hypotheses were analyzed using three multiple regression analyses to identify significant relationships. Beta weights and hierarchical regression analysis determined the percentage of the predictor variables contribution to the total variance of the criterion variables, JR, JP, and JS. ^ The findings highlight the importance of self-determination skills in predicting job retention, satisfaction, and performance for employees with MR. Consistent with the literature and hypothesized model, there was a predictive relationship between SD, JS and JR. Furthermore, SD and PJC were predictors of JP. SD and JR were predictors of JS. Interestingly, the results indicated no significant relationship between JR and JP, or between JP and JS, or between PJC and JS. This suggests that there is a limited fit between the hypothesized model and the study's findings. However, the theoretical contribution made by this study is that self-determination is a particularly relevant predictor of important work outcomes including JR, JP, and JS. This finding is consistent with Deci's (1992) Self-Determination Theory and Wehmeyer's (1996) argument that SD skills in individuals with disabilities have important consequences for the success in transitioning from school to adult and work life. This study provides job retention strategies that offer rehabilitation and HR professionals a useful structure for understanding and implementing job retention interventions for people with MR. ^ The study concluded that workers with mental retardation who had more self-determination skills were employed longer, more satisfied, and better performers on the job. Also, individuals whose jobs were matched to their interests and abilities (person-job congruency) were better at self-determination skills. ^
Resumo:
This study examined Kirkpatrick’s training evaluation model (Kirkpatrick & Kirkpatrick, 2006) by assessing a sales training program conducted at an organization in the hospitality industry. The study assessed the employees’ training outcomes of knowledge and skills, job performance, and the impact of the training upon the organization. By assessing these training outcomes and their relationships, the study demonstrated whether Kirkpatrick’s theories are supported and the lower evaluation levels can be used to predict organizational impact. The population for this study was a group of reservations sales agents from a leading luxury hotel chain’s reservations center. During the study period from January 2005 to May 2007, there were 335 reservations sales agents employed in this Global Reservations Center (GRC). The number of reservations sales agents who had completed a sales training program/intervention during this period and had data available for at least two months pre and post training composed the sample for this study. The number of agents was 69 ( N = 69). Four hypotheses were tested through paired-samples t tests, correlation, and hierarchical regression analytic procedures. Results from the analyses supported the hypotheses in this study. The significant improvement in the call score supported hypothesis one that the reservations sales agents who completed the training improved their knowledge of content and required skills in handling calls (Level 2). Hypothesis two was accepted in part as there was significant improvement in call conversion, but there was no significant improvement of time usage. The significant improvement in the sales per call supported hypothesis three that the reservations agents who completed the training contributed to increased organizational impact (Level 4), i.e., made significantly more sales. Last, findings supported hypothesis four that Level 2 and Level 3 variables can be used for predicting Level 4 organizational impact. The findings supported the theory of Kirkpatrick’s evaluation model that in order to expect organizational results, a positive change in behavior (job performance) and learning must occur. The examinations of Levels 2 and 3 helped to partially explain and predict Level 4 results.
Resumo:
The Ellison Executive Mentoring Inclusive Community Building (ICB) Model is a paradigm for initiating and implementing projects utilizing executives and professionals from a variety of fields and industries, university students, and pre-college students. The model emphasizes adherence to ethical values and promotes inclusiveness in community development. It is a hierarchical model in which actors in each succeeding level of operation serve as mentors to the next. Through a three-step process--content, process, and product--participants must be trained with this mentoring and apprenticeship paradigm in conflict resolution, and they receive sensitivitiy and diversity training, through an interactive and dramatic exposition. The content phase introduces participants to the model's philosophy, ethics, values and methods of operation. The process used to teach and reinforce its precepts is the mentoring and apprenticeship activities and projects in which the participants engage and whose end product demontrates their knowledge and understanding of the model's concepts. This study sought to ascertain from the participants' perspectives whether the model's mentoring approach is an effective means of fostering inclusiveness, based upon their own experiences in using it. The research utilized a qualitative approach and included data from field observations, individual and group interviews, and written accounts of participants' attitudes. Participants complete ICB projects utilizing the Ellison Model as a method of development and implementation. They generally perceive that the model is a viable tool for dealing with diversity issues whether at work, at school, or at home. The projects are also instructional in that whether participants are mentored or seve as apprentices, they gain useful skills and knowledge about their careers. Since the model is relatively new, there is ample room for research in a variety of areas including organizational studies to dertmine its effectiveness in combating problems related to various kinds of discrimination.
Resumo:
Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.