3 resultados para harmful algae

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanobacteria ("blue-green algae") are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called "harmful algal blooms", particularly in freshwater systems, a number of these metabolites have been associated—as "toxins", or commonly "cyanotoxins"—with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. ^ We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quorum sensing is a communication mechanism employed by many bacteria. The bacteria secrete signal molecules known as acyl homoseriene lactones (AHLs) that cue to population size/density. Bacteria can be alerted of this optimum population by the concentration of these signal molecules. When the concentration of AHLs exceed a threshold valve, they enter the bacterial cell and causes the transcription of genes encoding virulence factors necessary for their colonization and survival. The marine algae Delise a pulchra, found off the coast of Australia is thought to produce compounds that inhibit the activity of the AHLs. The algae employ these compounds, known as furanones, as an anti-fouling agent. We postulated that marine algae of South Florida might contain similar activity; we screened 30 different algal species and found 22 species had the activity. Algal extracts were made from Halimeda incrassata using hexane, chloroform, ethyl acetate and methanol as solvents. The extracts were assayed for anti-quorum sensing activity. The results showed many of the South Florida green algae to possess anti-quorum sensing activity, however extracts of H incrassata did not show quorum sensing inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshwater use is a major concern in the mass production of algae for biofuels. This project examined the use of canal water obtained from the Everglades Agricultural Area as a base medium for the mass production of algae. This water is not suitable for human consumption, and it is currently used for crop irrigation. A variety of canals were found to be suitable for water collection. Comparison of two methods for algal production showed no significant difference in biomass accumulation. It was discovered that synthetic reticulated foam can be used for algal biomass collection and harvest, and there is potential for its application in large-scale operations. Finally, it was determined that high alkaline conditions may help limit contaminants and competing organisms in growing algae cultures.