6 resultados para growth rate and growth regulation
em Digital Commons at Florida International University
Resumo:
The philosopher and novelist Ayn Rand (1905–1982) is an icon of American culture. That culture misunderstands her, however. It perceives her solely as a pure market conservative. In the first forty years of her life, Rand's individualism was intellectual and served as a defense for the free trade of ideas. It originated in the Russian Revolution. In 1926, when Rand left the Soviet Union, she developed her individualism into an American philosophy. Her ideas of the individual in society belonged to a debate where intellectuals intended to abolish the State and free man and woman from its intellectual snares. To present Rand as a freethinker allows me to examine her anticommunism as a reaction against Leninism and to consider the relation of her ideas to Marxism. This approach stresses that Rand, as Marx, opposed the State and argued for the historical importance of a capitalist revolution. For Rand the latter, however, depended on an entrepreneurial class that rejected Protestantism as ideology – which she contended threatened its interests because Christianity had lost its historical significance. This exposes the nature of Rand's intellectual individualism in American society, where the majority on the entire political spectrum still identified with the teachings of Christ. It also reveals the dynamics of her anticommunism. From 1926 to 1943, Rand remodeled American individualism and as she did so, she determined her opposition first to the New Deal liberals and second business conservatives. To these ends, Marxism and Protestantism served Rand's individualism and made her an American icon of the twentieth century.
Resumo:
Most pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds. Formation of the correct disulfide bonds is essential for stability in almost all cases. Disulfide containing proteins can be rapidly and inexpensively overexpressed in bacteria. However, the overexpressed proteins usually form aggregates inside the bacteria, called inclusion bodies, which contains inactive and non-native protein. To obtain native protein, inclusion bodies need to be isolated and resolubilized, and then the resulting protein refolded in vitro. In vitro protein folding is aided by the addition of a redox buffer, which is composed of a small molecule disulfide and/or a small molecule thiol. The most commonly used redox buffer contains reduced and oxidized glutathione. Recently, aliphatic dithiols and aromatic monothiols have been employed as redox buffers. Aliphatic dithiols improved the yield of native protein as compared to the aliphatic thiol, glutathione. Dithiols mimic the in vivo protein folding catalyst, protein disulfide isomerase, which has two thiols per active site. Furthermore, aromatic monothiols increased the folding rate and yield of lysozyme and RNase A relative to glutathione. By combining the beneficial properties of aliphatic dithiols and aromatic monothiols, aromatic dithiols were designed and were expected to increase in vitro protein folding rates and yields. Aromatic monothiols (1-4) and their corresponding disulfides (5-8), two series of ortho- and para-substituted ethylene glycol dithiols (9-15), and a series of aromatic quaternary ammonium salt dithiols (16-17) were synthesized on a multigram scale. Monothiols and disulfides (1-8) were utilized to fold lysozyme and bovine pancreatic trypsin inhibitor. Dithiols (11-17) were tested for their ability to fold lysozyme. At pH 7.0 and pH 8.0, and high protein concentration (1 mg/mL), aromatic dithiols (16, 17) and a monothiol (3) significantly enhanced the in vitro folding rate and yield of lysozyme relative to the aliphatic thiol, glutathione. Additionally, aromatic dithiols (16, 17) significantly enhance the folding yield as compared to the corresponding aromatic monothiol (3). Thus, the folding rate and yield enhancements achieved in in vitro protein folding at high protein concentration will decrease the volume of renaturation solution required for large scale processes and consequently reduce processing time and cost.
Resumo:
The balance between the costs and benefits of conspicuous signals ensures that the expression of those signals is related to the quality of the bearer. Plastic signals could enable males to maximize conspicuous traits to impress mates and competitors, but reduce the expression of those traits to minimize signaling costs, potentially compromising the information conveyed by the signals. ^ I investigated the effect of signal enhancement on the information coded by the biphasic electric signal pulse of the gymnotiform fish Brachyhypopomus gauderio. Increases in population density drive males to enhance the amplitude of their signals. I found that signal amplitude enhancement improves the information about the signaler's size. Furthermore, I found that the elongation of the signal's second phase conveys information about androgen levels in both sexes, gonad size in males and estrogen levels in females. Androgens link the duration of the signal's second phase to other androgen-mediated traits making the signal an honest indicator of reproductive state and aggressive motivation. ^ Signal amplitude enhancement facilitates the assessment of the signaler's resource holding potential, important for male-male interactions, while signal duration provides information about aggressive motivation to same-sex competitors and reproductive state to the opposite sex. Moreover, I found that female signals also change in accordance to the social environment. Females also increase the amplitude of their signal when population density increases and elongate the duration of their signal's second phase when the sex ratio becomes female-biased. Indicating that some degree of sexual selection operates in females. ^ I studied whether male B. gauderio use signal plasticity to reduce the cost of reproductive signaling when energy is limited. Surprisingly, I found that food limitation promotes the investment in reproduction manifested as signal enhancement and elevated androgen levels. The short lifespan and single breeding season of B. gauderio diminishes the advantage of energy savings and gives priority to sustaining reproduction. I conclude that the electric signal of B. gauderio provides reliable information about the signaler, the quality of this information is reinforced rather than degraded with signal enhancement.^
Resumo:
Almost all pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds, which are essential for protein functions. In many cases, disulfidecontaining proteins are produced via in vitro protein folding that involves the oxidation of reduced protein to native protein, a complex process. The in vitro folding of reduced lysozyme has been extensively studied as a model system because native lysozyme is small, inexpensive, and has only four disulfide bonds. The folding of reduced lysozyme is conducted with the aid of a redox buffer consisting of a small molecule disulfide and a small molecule thiol, such as oxidized and reduced glutathione. Herein, in vitro folding rates and yields of lysozyme obtained in the presence of a series of aromatic thiols and oxidized glutathione are compared to those obtained with reduced and oxidized glutathione. Results showed that aromatic thiols significantly increase the folding rate of lysozyme compared to glutathione.
Resumo:
In this dissertation, I examine both theoretically and empirically the relationship between stock prices and income distribution using an endogenous growth model with social status impatience.^ The theoretical part looks into how status impatience and current economic status jointly determine time preference, savings, future economic status, stock prices, growth and wealth distribution in the steady state. This work builds on Burgstaller and Karayalcin (1996).^ More specifically, I look at (i) the effects of the distribution of status impatience levels on the distribution of steady state assets, incomes and consumption and (ii) the effects of changes in relative levels of status impatience on stock prices. Therefore, from (i) and (ii), I derive the correlation between stock prices, incomes and asset distribution. Also, the analysis of the stack market is undertaken in the presence of adjustment costs to investments.^ The empirical chapter looks at (i) the correlation between income inequality and long run economic growth on the one hand and (ii) the correlation between stock market prices and income inequality on the other. The role of stock prices and social status is examined to better understand the forces that enable a country to grow overtime and to determine why output per capita varies across countries. The data are from Summers and Heston (1988), Barro and Wolf (1989), Alesina and Rodrik (1994), Global financial Database (1997) and the World Bank. Data for social status are collected through a primary sample survey on the internet. Twenty-five developed and developing countries are included in the sample.^ The model developed in this study was specified as a system of simultaneous equations, in which per capita growth rate and income inequality were endogenous variables. Additionally, stock price index and social status measures were also incorporated. The results indicate that income inequality is inversely related to economic growth. In addition, increase in income inequality arising from higher stock prices constrains growth. Moreover, where social status is determined by income levels, it influences long run growth. Therefore, these results support findings of Persson and Tabellini (1994) and Alesina and Rodrik (1994). ^
Resumo:
Tropical rainforests account for more than a third of global net primary production and contain more than half of the global forest carbon. Though these forests are a disproportionately important component of the global carbon cycle, the relationship between rainforest productivity and climate remains poorly understood. Understanding the link between current climate and rainforest tree stem diameter increment, a major constituent of forest productivity, will be crucial to efforts at modeling future climate and rainforest response to climate change. This work reports the physiological and stem growth responses to micrometeorological and phenological states of ten species of canopy trees in a Costa Rican wet tropical forest at sub-annual time intervals. I measured tree growth using band dendrometers and estimated leaf and reproductive phenological states monthly. Electronic data loggers recorded xylem sap flow (an indicator of photosynthetic rate) and weather at half-hour intervals. An analysis of xylem sap flow showed that physiological responses were independent of species, which allowed me to construct a general model of weather driven sap flow rates. This model predicted more than eighty percent of climate driven sap flow variation. Leaf phenology influenced growth in three of the ten species, with two of these species showing a link between leaf phenology and weather. A combination of rainfall, air temperature, and irradiance likely provided the cues that triggered leaf drop in Dipteryx panamensis and Lecythis ampla. Combining the results of the sap flow model, growth, and the climate measures showed tree growth was correlated to climate, though the majority of growth variation remained unexplained. Low variance in the environmental variables and growth rates likely contributed to the large amount of unexplained variation. A simple model that included previous growth increment and three meteorological variables explained from four to nearly fifty percent of the growth variation. Significant growth carryover existed in six of the ten species, and rainfall was positively correlated to growth in eight of the ten species. Minimum nighttime temperature was also correlated to higher growth rates in five of the species and irradiance in two species. These results indicate that tropical rainforest tree trunks could act as carbon sinks if future climate becomes wetter and slightly warmer. ^