4 resultados para ground penetrating radar

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airborne LIDAR (Light Detecting and Ranging) is a relatively new technique that rapidly and accurately measures micro-topographic features. This study compares topography derived from LIDAR with subsurface karst structures mapped in 3-dimensions with ground penetrating radar (GPR). Over 500 km of LIDAR data were collected in 1995 by the NASA ATM instrument. The LIDAR data was processed and analyzed to identify closed depressions. A GPR survey was then conducted at a 200 by 600 m site to determine if the target features are associated with buried karst structures. The GPR survey resolved two major depressions in the top of a clay rich layer at ~10m depth. These features are interpreted as buried dolines and are associated spatially with subtle (< 1m) trough-like depressions in the topography resolved from the LIDAR data. This suggests that airborne LIDAR may be a useful tool for indirectly detecting subsurface features associated with sinkhole hazard.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 5,280 km2 Sian Ka’an Biosphere Reserve includes pristine wetlands fed by ground water from the karst aquifer of the Yucatan Peninsula, Mexico. The inflow through underground karst structures is hard to observe making it difficult to understand, quantify, and predict the wetland dynamics. Remotely sensed Synthetic Aperture Radar (SAR) amplitude and phase observations offer new opportunities to obtain information on hydrologic dynamics useful for wetland management. Backscatter amplitude of SAR data can be used to map flooding extent. Interferometric processing of the backscattered SAR phase data (InSAR) produces temporal phase-changes that can be related to relative water level changes in vegetated wetlands. We used 56 RADARSAT-1 SAR acquisitions to calculate 38 interferograms and 13 flooding maps with 24 day and 48 day time intervals covering July 2006 to March 2008. Flooding extent varied between 1,067 km2 and 2,588 km2 during the study period, and main water input was seen to take place in sloughs during October–December. We propose that main water input areas are associated with water-filled faults that transport ground water from the catchment to the wetlands. InSAR and Landsat data revealed local-scale water divides and surface water flow directions within the wetlands.