5 resultados para graphite-like-carbon
em Digital Commons at Florida International University
Resumo:
We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A. We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member mixing model with Seminole ramshorn snails (Planorbella duryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density.
Resumo:
δ13C and δ15N values were determined for the seagrassThalassia testudinum at four permanent seagrass monitoring stations in southFlorida, USA, through a quarterly sampling program over 3-years (1996–1998). All sites are seagrass beds with water depths of less than 6 m. Two sites are located on the Florida Bay side of the Florida Keys, and the other two sites are on the Atlantic side. The data analyzed over the 3 year study period display unique patterns associated with seasonal changes in primary productivity and potentially changes in the N and C pools. The mean carbon and nitrogenisotope values of T. testudinum from all four stations vary from −7.2 to −10.4‰ and 1.1 to 2.2‰, respectively. However, certain stations displayed anomalously depleted nitrogenisotope values (as low as −1.2‰). These values may indicate that biogeochemical processes like N fixation, ammonification and denitrification cause temporal changes in the isotopic composition of the source DIN. Both δ13C and δ15N values displayed seasonal enrichment-depletion patterns, with maximum enrichment occurring during the summer to early fall. The intra-annual variations of δ13C values from the different stations ranged from about 1 to 3.5‰; whereas variations in δ15N ranged from about 1 to 4.9‰. Certain sites showed a positive relationship between isotope values and productivity. These data indicate δ13C values display a high degree of seasonal variability as related to changes in productivity. δ15N values show clear intra-annual variations, but the observed changes do not necessarily follow a distinct seasonal cycle, indicating that changes in DIN will need further investigation.
Resumo:
In the current age of fast-depleting conventional energy sources, top priority is given to exploring non-conventional energy sources, designing highly efficient energy storage systems and converting existing machines/instruments/devices into energy-efficient ones. ‘Energy efficiency’ is one of the important challenges for today’s scientific and research community, worldwide. In line with this demand, the current research was focused on developing two highly energy-efficient devices – field emitters and Li-ion batteries, using beneficial properties of carbon nanotubes (CNT). Interface-engineered, directly grown CNTs were used as cathode in field emitters, while similar structure was applied as anode in Li-ion batteries. Interface engineering was found to offer minimum resistance to electron flow and strong bonding with the substrate. Both field emitters and Li-ion battery anodes were benefitted from these advantages, demonstrating high energy efficiency. Field emitter, developed during this research, could be characterized by low turn-on field, high emission current, very high field enhancement factor and extremely good stability during long-run. Further, application of 3-dimensional design to these field emitters resulted in achieving one of the highest emission current densities reported so far. The 3-D field emitter registered 27 times increase in current density, as compared to their 2-D counterparts. These achievements were further followed by adding new functionalities, transparency and flexibility, to field emitters, keeping in view of current demand for flexible displays. A CNT-graphene hybrid structure showed appreciable emission, along with very good transparency and flexibility. Li-ion battery anodes, prepared using the interface-engineered CNTs, have offered 140% increment in capacity, as compared to conventional graphite anodes. Further, it has shown very good rate capability and an exceptional ‘zero capacity degradation’ during long cycle operation. Enhanced safety and charge transfer mechanism of this novel anode structure could be explained from structural characterization. In an attempt to progress further, CNTs were coated with ultrathin alumina by atomic layer deposition technique. These alumina-coated CNT anodes offered much higher capacity and an exceptional rate capability, with very low capacity degradation in higher current densities. These highly energy efficient CNT based anodes are expected to enhance capacities of future Li-ion batteries.
Resumo:
The protection of organic carbon stored in forests is considered as an important method for mitigating climate change. Like terrestrial ecosystems, coastal ecosystems store large amounts of carbon, and there are initiatives to protect these ‘blue carbon’ stores. Organic carbon stocks in tidal salt marshes and mangroves have been estimated, but uncertainties in the stores of seagrass meadows—some of the most productive ecosystems on Earth—hinder the application of marine carbon conservation schemes. Here, we compile published and unpublished measurements of the organic carbon content of living seagrass biomass and underlying soils in 946 distinct seagrass meadows across the globe. Using only data from sites for which full inventories exist, we estimate that, globally, seagrass ecosystems could store as much as 19.9 Pg organic carbon; according to a more conservative approach, in which we incorporate more data from surface soils and depth-dependent declines in soil carbon stocks, we estimate that the seagrass carbon pool lies between 4.2 and 8.4 Pg carbon. We estimate that present rates of seagrass loss could result in the release of up to 299 Tg carbon per year, assuming that all of the organic carbon in seagrass biomass and the top metre of soils is remineralized.
Resumo:
Stable isotopes are important tools for understanding the trophic roles of elasmobranchs. However, whether different tissues provide consistent stable isotope values within an individual are largely unknown. To address this, the relationships among carbon and nitrogen isotope values were quantified for blood, muscle, and fin from juvenile bull sharks (Carcharhinus leucas) and blood and fin from large tiger sharks (Galeocerdo cuvier) collected in two different ecosystems. We also investigated the relationship between shark size and the magnitude of differences in isotopic values between tissues. Isotope values were significantly positively correlated for all paired tissue comparisons, but R2 values were much higher for δ13C than for δ15N. Paired differences between isotopic values of tissues were relatively small but varied significantly with shark total length, suggesting that shark size can be an important factor influencing the magnitude of differences in isotope values of different tissues. For studies of juvenile sharks, care should be taken in using slow turnover tissues like muscle and fin, because they may retain a maternal signature for an extended time. Although correlations were relatively strong, results suggest that correction factors should be generated for the desired study species and may only allow coarse-scale comparisons between studies using different tissue types.