4 resultados para glutamine synthetase
em Digital Commons at Florida International University
Resumo:
Pahayokolides A-D are cytotoxic cyclic polypeptides produced by the freshwater cyanobacterium Lyngbya sp. strain 15-2 that possess an unusual β-amino acid, 3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Athmu). The absolute configuration of pahayokolides A-D was determined using advanced Marfey’s method. It was also confirmed that a pendant N-acetyl- N-methyl leucine moiety in pahayokolide A was absent in pahayokolides B and pahayokolides C-D were conformers of pahayokolide A. Feeding experiments indicated that the biosynthesis of the Athmu sidechain arises from leucine or α-ketoisovalerate, however could not be further extended by three rounds of condensation with malonate units. Putative four peptide and one unique polyketide synthetases in Lyngbya sp. strain 15-2 were identified by using a PCR method and degenerate primers derived from conserved core sequences of known NRPSs and PKSs. Identification of one unique KS domain conflicted with the logic rule that the long side chain of Athmu was assembled by three rounds of ketide extensions if PKSs were involved. A gene cluster (pah) encoding a peptide synthetase putatively producing pahayokolide was cloned, partially sequenced and characterized. Seven modules of the non-ribosomal peptide synthetase (NRPS) were identified. Ten additional opening reading frames (ORFs) were found, responsible for peptide resistance, transport and degradation. Although the predicted substrate specificities of NRPS agreed with the structure of pahayokolide A partially, the disagreement could be explained. However, no PKS gene was found in the pah gene cluster.
Resumo:
Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in k cat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.
Resumo:
Pahayokolides A-D are cytotoxic cyclic polypeptides produced by the freshwater cyanobacterium Lyngbya sp. strain 15-2 that possess an unusual β-amino acid, 3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Athmu). The absolute configuration of pahayokolides A-D was determined using advanced Marfey’s method. It was also confirmed that a pendant N-acetyl-N-methyl leucine moiety in pahayokolide A was absent in pahayokolides B and pahayokolides C-D were conformers of pahayokolide A. Feeding experiments indicated that the biosynthesis of the Athmu sidechain arises from leucine or α-ketoisovalerate, however could not be further extended by three rounds of condensation with malonate units. Putative four peptide and one unique polyketide synthetases in Lyngbya sp. strain 15-2 were identified by using a PCR method and degenerate primers derived from conserved core sequences of known NRPSs and PKSs. Identification of one unique KS domain conflicted with the logic rule that the long side chain of Athmu was assembled by three rounds of ketide extensions if PKSs were involved. A gene cluster (pah) encoding a peptide synthetase putatively producing pahayokolide was cloned, partially sequenced and characterized. Seven modules of the non-ribosomal peptide synthetase (NRPS) were identified. Ten additional opening reading frames (ORFs) were found, responsible for peptide resistance, transport and degradation. Although the predicted substrate specificities of NRPS agreed with the structure of pahayokolide A partially, the disagreement could be explained. However, no PKS gene was found in the pah gene cluster.
Resumo:
Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in kcat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.