3 resultados para geometric singular perturbation theory

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). ^ In the present work, we follow the method originally proposed by Van Wet in LRT. The Hamiltonian in this approach is of the form: H = H 0(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H0 - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H0(E, B), include the external fields without any limitation on strength. ^ In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0, t → ∞, so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. ^ In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. ^ In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). In the present work, we follow the method originally proposed by Van Vliet in LRT. The Hamiltonian in this approach is of the form: H = H°(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H° - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H°(E, B) , include the external fields without any limitation on strength. In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0 , t → ∞ , so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current reform initiatives recommend that geometry instruction include the study of three-dimensional geometric objects and provide students with opportunities to use spatial skills in problem-solving tasks. Geometer's Sketchpad (GSP) is a dynamic and interactive computer program that enables the user to investigate and explore geometric concepts and manipulate geometric structures. Research using GSP as an instructional tool has focused primarily on teaching and learning two-dimensional geometry. This study explored the effect of a GSP based instructional environment on students' geometric thinking and three-dimensional spatial ability as they used GSP to learn three-dimensional geometry. For 10 weeks, 18 tenth-grade students from an urban school district used GSP to construct and analyze dynamic, two-dimensional representations of three-dimensional objects in a classroom environment that encouraged exploration, discussion, conjecture, and verification. The data were collected primarily from participant observations and clinical interviews and analyzed using qualitative methods of analysis. In addition, pretest and posttest measures of three-dimensional spatial ability and van Hiele level of geometric thinking were obtained. Spatial ability measures were analyzed using standard t-test analysis. ^ The data from this study indicate that GSP is a viable tool to teach students about three-dimensional geometric objects. A comparison of students' pretest and posttest van Hiele levels showed an improvement in geometric thinking, especially for students on lower levels of the van Hiele theory. Evidence at the p < .05 level indicated that students' spatial ability improved significantly. Specifically, the GSP dynamic, visual environment supported students' visualization and reasoning processes as students attempted to solve challenging tasks about three-dimensional geometric objects. The GSP instructional activities also provided students with an experiential base and an intuitive understanding about three-dimensional objects from which more formal work in geometry could be pursued. This study demonstrates that by designing appropriate GSP based instructional environments, it is possible to help students improve their spatial skills, develop more coherent and accurate intuitions about three-dimensional geometric objects, and progress through the levels of geometric thinking proposed by van Hiele. ^