3 resultados para generalized additive model

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One in five adults 65 years and older has diabetes. Coping with diabetes is a lifelong task, and much of the responsibility for managing the disease falls upon the individual. Reports of non-adherence to recommended treatments are high. Understanding the additive impact of diabetes on quality of life issues is important. The purpose of this study was to investigate the quality of life and diabetes self-management behaviors in ethnically diverse older adults with type 2 diabetes. The SF-12v2 was used to measure physical and mental health quality of life. Scores were compared to general, age sub-groups, and diabetes-specific norms. The Transtheoretical Model (TTM) was applied to assess perceived versus actual behavior for three diabetes self-management tasks: dietary management, medication management, and blood glucose self-monitoring. Dietary intake and hemoglobin A1c values were measured as outcome variables. Utilizing a cross-sectional research design, participants were recruited from Elderly Nutrition Program congregate meal sites (n = 148, mean age 75). ^ Results showed that mean scores of the SF-12v2 were significantly lower in the study sample than the general norms for physical health (p < .001), mental health (p < .01), age sub-group norms (p < .05), and diabetes-specific norms for physical health (p < .001). A multiple regression analysis found that adherence to an exercise plan was significantly associated with better physical health (p < .001). Transtheoretical Model multiple regression analyses explained 68% of the variance for % Kcal from fat, 41% for fiber, 70% for % Kcal from carbohydrate, and 7% for hemoglobin A 1c values. Significant associations were found between TTM stage of change and dietary fiber intake (p < .01). Other significant associations related to diet included gender (p < .01), ethnicity (p < .05), employment (p < .05), type of insurance (p < .05), adherence to an exercise plan (p < .05), number of doctor visits/year ( p < .01), and physical health (p < .05). Significant associations were found between hemoglobin A1c values and age ( p < .05), being non-Hispanic Black (p < .01), income (p < .01), and eye problems (p < .05). ^ The study highlights the importance of the beneficial effects of exercise on quality of life issues. Furthermore, application of the Transtheoretical Model in conjunction with an assessment of dietary intake may be valuable in helping individuals make lifestyle changes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software engineering researchers are challenged to provide increasingly more powerful levels of abstractions to address the rising complexity inherent in software solutions. One new development paradigm that places models as abstraction at the forefront of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code.^ Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process.^ The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources.^ At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM's synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise.^ This dissertation investigates how to decouple the DSK from the MoE and subsequently producing a generic model of execution (GMoE) from the remaining application logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis component of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions.^ This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software engineering researchers are challenged to provide increasingly more pow- erful levels of abstractions to address the rising complexity inherent in software solu- tions. One new development paradigm that places models as abstraction at the fore- front of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code. Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process. The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources. At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM’s synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise. This dissertation investigates how to decouple the DSK from the MoE and sub- sequently producing a generic model of execution (GMoE) from the remaining appli- cation logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis com- ponent of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions. This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.