8 resultados para general regression model
em Digital Commons at Florida International University
Resumo:
Multiple linear regression model plays a key role in statistical inference and it has extensive applications in business, environmental, physical and social sciences. Multicollinearity has been a considerable problem in multiple regression analysis. When the regressor variables are multicollinear, it becomes difficult to make precise statistical inferences about the regression coefficients. There are some statistical methods that can be used, which are discussed in this thesis are ridge regression, Liu, two parameter biased and LASSO estimators. Firstly, an analytical comparison on the basis of risk was made among ridge, Liu and LASSO estimators under orthonormal regression model. I found that LASSO dominates least squares, ridge and Liu estimators over a significant portion of the parameter space for large dimension. Secondly, a simulation study was conducted to compare performance of ridge, Liu and two parameter biased estimator by their mean squared error criterion. I found that two parameter biased estimator performs better than its corresponding ridge regression estimator. Overall, Liu estimator performs better than both ridge and two parameter biased estimator.
Resumo:
Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.
Resumo:
The abundance of calcareous green algae was recorded quarterly at 28 sites within the Florida Keys National Marine Sanctuary (FKNMS) for a period of 7 years as part of a sea grass monitoring program. To evaluate the validity of using the functional-form group approach, we designed a sampling method that included the functional-form group and the component genera. This strategy enabled us to analyze the spatiotemporal patterns in the abundance of calcareous green algae as a group and to describe synchronous behavior among its genera through the application of a nonlinear regression model to both categories of data. Spatial analyses revealed that, in general, all genera displayed long-term trends of increasing abundance at most sites; however, at some sites the long-term trends for genera opposed one another. Strong synchrony in the timing of seasonal changes was found among all genera, possibly reflecting similar reproductive and seasonal growth pattern, but the variability in the magnitude of seasonal changes was very high among genera and sites. No spatial patterns were found in long-term or seasonal changes; the only significant relation detected was for slope, with sites closer to land showing higher values, suggesting that some factors associated with land proximity are affecting this increase. We conclude that the abundances of genera behaved differently from the functional-form group, indicating that the use of the functionalform group approach may be unsuitable to detect changes in sea grass community structure in the FKNMS at the existing temporal and spatial scale of the monitoring program.
Resumo:
We developed a conceptual ecological model (CEM) for invasive species to help understand the role invasive exotics have in ecosystem ecology and their impacts on restoration activities. Our model, which can be applied to any invasive species, grew from the eco-regional conceptual models developed for Everglades restoration. These models identify ecological drivers, stressors, effects and attributes; we integrated the unique aspects of exotic species invasions and effects into this conceptual hierarchy. We used the model to help identify important aspects of invasion in the development of an invasive exotic plant ecological indicator, which is described a companion paper in this special issue journal. A key aspect of the CEM is that it is a general ecological model that can be tailored to specific cases and species, as the details of any invasion are unique to that invasive species. Our model encompasses the temporal and spatial changes that characterize invasion, identifying the general conditions that allow a species to become invasive in a de novo environment; it then enumerates the possible effects exotic species may have collectively and individually at varying scales and for different ecosystem properties, once a species becomes invasive. The model provides suites of characteristics and processes, as well as hypothesized causal relationships to consider when thinking about the effects or potential effects of an invasive exotic and how restoration efforts will affect these characteristics and processes. In order to illustrate how to use the model as a blueprint for applying a similar approach to other invasive species and ecosystems, we give two examples of using this conceptual model to evaluate the status of two south Florida invasive exotic plant species (melaleuca and Old World climbing fern) and consider potential impacts of these invasive species on restoration.
Resumo:
Chronic disease affects 80% of adults over the age of 65 and is expected to increase in prevalence. To address the burden of chronic disease, self-management programs have been developed to increase self-efficacy and improve quality of life by reducing or halting disease symptoms. Two programs that have been developed to address chronic disease are the Chronic Disease Self-Management Program (CDSMP) and Tomando Control de su Salud (TCDS). CDSMP and TCDS both focus on improving participant self-efficacy, but use different curricula, as TCDS is culturally tailored for the Hispanic population. Few studies have evaluated the effectiveness of CDSMP and TCDS when translated to community settings. In addition, little is known about the correlation between demographic, baseline health status, and psychosocial factors and completion of either CDSMP or TCDS. This study used secondary data collected by agencies of the Healthy Aging Regional Collaborative from 10/01/2008–12/31/2010. The aims of this study were to examine six week differences in self-efficacy, time spent performing physical activity, and social/role activity limitations, and to identify correlates of program completion using baseline demographic and psychosocial factors. To examine if differences existed a general linear model was used. Additionally, logistic regression was used to examine correlates of program completion. Study findings show that all measures showed improvement at week six. For CDSMP, self-efficacy to manage disease (p = .001), self-efficacy to manage emotions (p = .026), social/role activities limitations (p = .001), and time spent walking (p = .008) were statistically significant. For TCDS, self-efficacy to manage disease (p = .006), social/role activities limitations (p = .001), and time spent walking (p = .016) and performing other aerobic activity (p = .005) were significant. For CDSMP, no correlates predicting program completion were found to be significant. For TCDS, participants who were male (OR=2.3, 95%CI: 1.15–4.66), from Broward County (OR=2.3, 95%CI: 1.27–4.25), or living alone (OR=2.0, 95%CI: 1.29-–3.08) were more likely to complete the program. CDSMP and TCDS, when implemented through a collaborative effort, can result in improvements for participants. Effective chronic disease management can improve health, quality of life, and reduce health care expenditures among older adults.
Resumo:
The dissertation takes a multivariate approach to answer the question of how applicant age, after controlling for other variables, affects employment success in a public organization. In addition to applicant age, there are five other categories of variables examined: organization/applicant variables describing the relationship of the applicant to the organization; organization/position variables describing the target position as it relates to the organization; episodic variables such as applicant age relative to the ages of competing applicants; economic variables relating to the salary needs of older applicants; and cognitive variables that may affect the decision maker's evaluation of the applicant. ^ An exploratory phase of research employs archival data from approximately 500 decisions made in the past three years to hire or promote applicants for positions in one public health administration organization. A logit regression model is employed to examine the probability that the variables modify the effect of applicant age on employment success. A confirmatory phase of the dissertation is a controlled experiment in which hiring decision makers from the same public organization perform a simulated hiring decision exercise to evaluate hypothetical applicants of similar qualifications but of different ages. The responses of the decision makers to a series of bipolar adjective scales add support to the cognitive component of the theoretical model of the hiring decision. A final section contains information gathered from interviews with key informants. ^ Applicant age has tended to have a curvilinear relationship with employment success. For some positions, the mean age of the applicants most likely to succeed varies with the values of the five groups of moderating variables. The research contributes not only to the practice of public personnel administration, but is useful in examining larger public policy issues associated with an aging workforce. ^
Resumo:
Prior to 2000, there were less than 1.6 million students enrolled in at least one online course. By fall 2010, student enrollment in online distance education showed a phenomenal 283% increase to 6.1 million. Two years later, this number had grown to 7.1 million. In light of this significant growth and skepticism about quality, there have been calls for greater oversight of this format of educational delivery. Accrediting bodies tasked with this oversight have developed guidelines and standards for online education. There is a lack of empirical studies that examine the relationship between accrediting standards and student success. The purpose of this study was to examine the relationship between the presence of Southern Association of Colleges and Schools Commission on College (SACSCOC) standards for online education in online courses, (a) student support services and (b) curriculum and instruction, and student success. An original 24-item survey with an overall reliability coefficient of .94 was administered to students (N=464) at Florida International University, enrolled in 24 university-wide undergraduate online courses during fall 2014, who rated the presence of these standards in their online courses. The general linear model was utilized to analyze the data. The results of the study indicated that the two standards, student support services and curriculum and instruction were both significantly and positively correlated with student success but with small R2 and strengths of association less than .35 and .20 respectively. Mixed results were produced from Chi-square tests for differences in student success between higher and lower rated online courses when controlling for various covariates such as discipline, gender, race/ethnicity, GPA, age, and number of online courses previously taken. A multiple linear regression analysis revealed that the curriculum and instruction standard was the only variable that accounted for a significant amount of unique variance in student success. Another regression test revealed that no significant interaction effect exists between the two SACSCOC standards and GPA in predicting student success. The results of this study are useful for administrators, faculty, and researchers who are interested in accreditation standards for online education and how these standards relate to student success.
Resumo:
Prior to 2000, there were less than 1.6 million students enrolled in at least one online course. By fall 2010, student enrollment in online distance education showed a phenomenal 283% increase to 6.1 million. Two years later, this number had grown to 7.1 million. In light of this significant growth and skepticism about quality, there have been calls for greater oversight of this format of educational delivery. Accrediting bodies tasked with this oversight have developed guidelines and standards for online education. ^ There is a lack of empirical studies that examine the relationship between accrediting standards and student success. The purpose of this study was to examine the relationship between the presence of Southern Association of Colleges and Schools Commission on College (SACSCOC) standards for online education in online courses, (a) student support services and (b) curriculum and instruction, and student success. An original 24-item survey with an overall reliability coefficient of .94 was administered to students (N=464) at Florida International University, enrolled in 24 university-wide undergraduate online courses during fall 2014, who rated the presence of these standards in their online courses. The general linear model was utilized to analyze the data. The results of the study indicated that the two standards, student support services and curriculum and instruction were both significantly and positively correlated with student success but with small R2 and strengths of association less than .35 and .20 respectively. Mixed results were produced from Chi-square tests for differences in student success between higher and lower rated online courses when controlling for various covariates such as discipline, gender, race/ethnicity, GPA, age, and number of online courses previously taken. A multiple linear regression analysis revealed that the curriculum and instruction standard was the only variable that accounted for a significant amount of unique variance in student success. Another regression test revealed that no significant interaction effect exists between the two SACSCOC standards and GPA in predicting student success. ^ The results of this study are useful for administrators, faculty, and researchers who are interested in accreditation standards for online education and how these standards relate to student success.^