3 resultados para general circulation model (GCM) ground hydrolosic model (GHM) heat and vapor exchange between land and atmosphere
em Digital Commons at Florida International University
Resumo:
A model was tested to examine relationships among leadership behaviors, team diversity, and team process measures with team performance and satisfaction at both the team and leader-member levels of analysis. Relationships between leadership behavior and team demographic and cognitive diversity were hypothesized to have both direct effects on organizational outcomes as well as indirect effects through team processes. Leader member differences were investigated to determine the effects of leader-member diversity leader-member exchange quality, individual effectiveness and satisfaction.^ Leadership had little direct effect on team performance, but several strong positive indirect effects through team processes. Demographic Diversity had no impact on team processes, directly impacted only one performance measure, and moderated the leadership to team process relationship.^ Cognitive Diversity had a number of direct and indirect effects on team performance, the net effects uniformly positive, and did not moderate the leadership to team process relationship.^ In sum, the team model suggests a complex combination of leadership behaviors positively impacting team processes, demographic diversity having little impact on team process or performance, cognitive diversity having a positive net impact impact, and team processes having mixed effects on team outcomes.^ At the leader-member level, leadership behaviors were a strong predictor of Leader-Member Exchange (LMX) quality. Leader-member demographic and cognitive dissimilarity were each predictors of LMX quality, but failed to moderate the leader behavior to LMX quality relationship. LMX quality was strongly and positively related to self reported effectiveness and satisfaction.^ The study makes several contributions to the literature. First, it explicitly links leadership and team diversity. Second, demographic and cognitive diversity are conceptualized as distinct and multi-faceted constructs. Third, a methodology for creating an index of categorical demographic and interval cognitive measures is provided so that diversity can be measured in a holistic conjoint fashion. Fourth, the study simultaneously investigates the impact of diversity at the team and leader-member levels of analyses. Fifth, insights into the moderating impact of different forms of team diversity on the leadership to team process relationship are provided. Sixth, this study incorporates a wide range of objective and independent measures to provide a 360$\sp\circ$ assessment of team performance. ^
Resumo:
The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. ^ Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. ^ Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building's energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. ^ In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. ^ An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.^
Resumo:
The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building’s energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.