2 resultados para fuzzy linear system

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trenchless methods have been considered to be a viable solution for pipeline projects in urban areas. Their applicability in pipeline projects is expected to increase with the rapid advancements in technology and emerging concerns regarding social costs related to trenching methods. Selecting appropriate project delivery system (PDS) is a key to the success of trenchless projects. To ensure success of the project, the selected project delivery should be tailored to trenchless project specific characteristics and owner needs, since the effectiveness of project delivery systems differs based on different project characteristics and owners requirements. Since different trenchless methods have specific characteristics such rate of installation, lengths of installation, and accuracy, the same project delivery systems may not be equally effective for different methods. The intent of this paper is to evaluate the appropriateness of different PDS for different trenchless methods. PDS are examined through a structured decision-making process called Fuzzy Delivery System Selection Model (FDSSM). The process of incorporating the impacts of: (a) the characteristics of trenchless projects and (b) owners’ needs in the FDSSM is performed by collecting data using questionnaires deployed to professionals involved in the trenchless industry in order to determine the importance of delivery systems selection attributes for different trenchless methods, and then analyzing this data. The sensitivity of PDS rankings with respect to trenchless methods is considered in order to evaluate whether similar project delivery systems are equally effective in different trenchless methods. The effectiveness of PDS with respect to attributes is defined as follows: a project delivery system is most effective with respect to an attribute (e.g., ability to control growth in costs ) if there is no project delivery system that is more effective than that PDS. The results of this study may assist trenchless project owners to select the appropriate PDS for the trenchless method selected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Virtual machines (VMs) are powerful platforms for building agile datacenters and emerging cloud systems. However, resource management for a VM-based system is still a challenging task. First, the complexity of application workloads as well as the interference among competing workloads makes it difficult to understand their VMs’ resource demands for meeting their Quality of Service (QoS) targets; Second, the dynamics in the applications and system makes it also difficult to maintain the desired QoS target while the environment changes; Third, the transparency of virtualization presents a hurdle for guest-layer application and host-layer VM scheduler to cooperate and improve application QoS and system efficiency. This dissertation proposes to address the above challenges through fuzzy modeling and control theory based VM resource management. First, a fuzzy-logic-based nonlinear modeling approach is proposed to accurately capture a VM’s complex demands of multiple types of resources automatically online based on the observed workload and resource usages. Second, to enable fast adaption for resource management, the fuzzy modeling approach is integrated with a predictive-control-based controller to form a new Fuzzy Modeling Predictive Control (FMPC) approach which can quickly track the applications’ QoS targets and optimize the resource allocations under dynamic changes in the system. Finally, to address the limitations of black-box-based resource management solutions, a cross-layer optimization approach is proposed to enable cooperation between a VM’s host and guest layers and further improve the application QoS and resource usage efficiency. The above proposed approaches are prototyped and evaluated on a Xen-based virtualized system and evaluated with representative benchmarks including TPC-H, RUBiS, and TerraFly. The results demonstrate that the fuzzy-modeling-based approach improves the accuracy in resource prediction by up to 31.4% compared to conventional regression approaches. The FMPC approach substantially outperforms the traditional linear-model-based predictive control approach in meeting application QoS targets for an oversubscribed system. It is able to manage dynamic VM resource allocations and migrations for over 100 concurrent VMs across multiple hosts with good efficiency. Finally, the cross-layer optimization approach further improves the performance of a virtualized application by up to 40% when the resources are contended by dynamic workloads.