17 resultados para fuzzy based evaluation method

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in multiscale material modeling of structural concrete have created an upsurge of interest in the accurate evaluation of mechanical properties and volume fractions of its nano constituents. The task is accomplished by analyzing the response of a material to indentation, obtained as an outcome of a nanoindentation experiment, using a procedure called the Oliver and Pharr (OP) method. Despite its widespread use, the accuracy of this method is often questioned when it is applied to the data from heterogeneous materials or from the materials that show pile-up and sink-in during indentation, which necessitates the development of an alternative method. ^ In this study, a model is developed within the framework defined by contact mechanics to compute the nanomechanical properties of a material from its indentation response. Unlike the OP method, indentation energies are employed in the form of dimensionless constants to evaluate model parameters. Analysis of the load-displacement data pertaining to a wide range of materials revealed that the energy constants may be used to determine the indenter tip bluntness, hardness and initial unloading stiffness of the material. The proposed model has two main advantages: (1) it does not require the computation of the contact area, a source of error in the existing method; and (2) it incorporates the effect of peak indentation load, dwelling period and indenter tip bluntness on the measured mechanical properties explicitly. ^ Indentation tests are also carried out on samples from cement paste to validate the energy based model developed herein by determining the elastic modulus and hardness of different phases of the paste. As a consequence, it has been found that the model computes the mechanical properties in close agreement with that obtained by the OP method; a discrepancy, though insignificant, is observed more in the case of C-S-H than in the anhydrous phase. Nevertheless, the proposed method is computationally efficient, and thus it is highly suitable when the grid indentation technique is required to be performed. In addition, several empirical relations are developed that are found to be crucial in understanding the nanomechanical behavior of cementitious materials.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system's EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter's components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This qualitative case study explored how employees learn from Team Primacy Concept (TPC)-based employee evaluation and how they apply the knowledge in their job performance. Kolb's experiential learning model (1974) served as a conceptual framework for the study to reveal the process of how employees learn from TPC evaluation, namely, how they experience, reflect, conceptualize and act on performance feedback. TPC based evaluation is a form of multirater evaluation that consists of three components: self-feedback, supervisor's feedback, and peer feedback. The distinctive characteristic of TPC based evaluation is the team evaluation component during which the employee's professional performance is discussed by one's peers in a face-to-face team setting, while other forms of multirater evaluation are usually conducted in a confidential and anonymous manner.^ Case study formed the methodological framework. The case was the Southeastern Virginia (SEVA) region of the Institute for Family Centered Services, and the participants were eight employees of the SEVA region. Findings showed that the evaluation process was anxiety producing for employees, especially the process of peer evaluation in a team setting. Preparation was found to be an important phase of TPC evaluation. Overall, the positive feedback delivered in a team setting made team members feel acknowledged. The study participants felt that honesty in providing feedback and openness to hearing challenges were significant prerequisites to the TPC evaluation process. Further, in the planning phase, employees strove to develop goals for themselves that were meaningful. Also, the catalyst for feedback implementation appeared to stem from one's accountability to self and to the client or community. Generally, the participants identified a number of performance improvement goals that they attained during their employment with IFCS, which were supported by their developmental plans.^ In conclusion, the study identified the process by which employees learned from TPC-based employee evaluation and the ways in which they used the knowledge to improve their job performance. Specifically, the study examined how participants felt and what they thought about TPC-based feedback, in what ways they reflected and made meaning of the feedback, and how they used the feedback to improve their job performance.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research provides data which investigates the feasibility of using fourth generation evaluation during the process of instruction. A semester length course entitled "Multicultural Communications", (PUR 5406/4934) was designed and used in this study, in response to the need for the communications profession to produce well-trained culturally sensitive practitioners for the work force and the market place. A revised pause model consisting of three one-on-one indepth interviews conducted outside of the class, three reflections periods during the class and a self-reflective essay prepared one week before the end of the course was analyzed. Narrative and graphic summaries of participant responses produced significant results. The revised pause model was found to be an effective evaluation method for use in multicultural education under certain conditions as perceived by the participants in the study. participant self-perceived behavior change and knowledge acquisition was identified through use of the revised pause model. Study results suggest that by using the revised pause model of evaluation, instructors teaching multicultural education in schools of journalism and mass communication is yet another way of enhancing their ability to become both the researcher and the research subject. In addition, the introduction of a qualitative model has been found to be a more useful way of generating participant involvement and introspection. Finally, the instructional design of the course used in the study provides communication educators with a practical way of preparing their students be effective communicators in a multicultural world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation introduces a new system for handwritten text recognition based on an improved neural network design. Most of the existing neural networks treat mean square error function as the standard error function. The system as proposed in this dissertation utilizes the mean quartic error function, where the third and fourth derivatives are non-zero. Consequently, many improvements on the training methods were achieved. The training results are carefully assessed before and after the update. To evaluate the performance of a training system, there are three essential factors to be considered, and they are from high to low importance priority: (1) error rate on testing set, (2) processing time needed to recognize a segmented character and (3) the total training time and subsequently the total testing time. It is observed that bounded training methods accelerate the training process, while semi-third order training methods, next-minimal training methods, and preprocessing operations reduce the error rate on the testing set. Empirical observations suggest that two combinations of training methods are needed for different case character recognition. Since character segmentation is required for word and sentence recognition, this dissertation provides also an effective rule-based segmentation method, which is different from the conventional adaptive segmentation methods. Dictionary-based correction is utilized to correct mistakes resulting from the recognition and segmentation phases. The integration of the segmentation methods with the handwritten character recognition algorithm yielded an accuracy of 92% for lower case characters and 97% for upper case characters. In the testing phase, the database consists of 20,000 handwritten characters, with 10,000 for each case. The testing phase on the recognition 10,000 handwritten characters required 8.5 seconds in processing time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to develop, explicate, and validate a comprehensive model in order to more effectively assess community injury prevention needs, plan and target efforts, identify potential interventions, and provide a framework for an outcome-based evaluation of the effectiveness of interventions. A systems model approach was developed to conceptualize the major components of inputs, efforts, outcomes and feedback within a community setting. Profiling of multiple data sources demonstrated a community feedback mechanism that increased awareness of priority issues and elicited support from traditional as well as non-traditional injury prevention partners. Injury countermeasures including education, enforcement, engineering, and economic incentives were presented for their potential synergistic effect impacting on knowledge, attitudes, or behaviors of a targeted population. Levels of outcome data were classified into ultimate, intermediate and immediate indicators to assist with determining the effectiveness of intervention efforts. A collaboration between business and health care was successful in achieving data access and use of an emergency department level of injury data for monitoring of the impact of community interventions. Evaluation of injury events and preventive efforts within the context of a dynamic community systems environment was applied to a study community with examples detailing actual profiling and trending of injuries. The resulting model of community injury prevention was validated using a community focus group, community injury prevention coordinators, and injury prevention national experts. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four aspects of horizontal genetic transfer during heterokaryon formation were examined in the asexual pathogen Fusarium oxysporum f.sp. cubense (Foc): (1) variability based on method of heterokaryon formation; (2) differences in nuclear and mitochondrial inheritance; (3) the occurrence of recombination without nuclear fusion; (4) the occurrence of horizontal genetic transfer between distantly related isolates. The use of non-pathogenic strains of Fusarium oxysporum as biocontrol agents warrants a closer examination at the reproductive life cycle of this fungus, particularly if drug resistance or pathogenicity genes can be transmitted horizontally. Experiments were divided into three phases. Phase I looked at heterokaryon formation by hyphal anastomosis and protoplast fusion. Phase II was a time course of heterokaryon formation to look at patterns of nuclear and mitochondrial inheritance. Phase III examined the genetic relatedness of the different vegetative compatibility groups using a multilocus analysis approach. Heterokaryon formation was evident within and between vegetative compatibility groups. Observation of non-parental genotypes after heterokaryon formation confirmed that, although a rare event, horizontal genetic transfer occurred during heterokaryon formation. Uniparental mitochondria inheritance was observed in heterokaryons formed either by hyphal anastomosis or protoplast fusion. Drug resistance was expressed during heterokaryon formation, even across greater genetic distances than those distances imposed by vegetative compatibility. Phylogenies inferred from different molecular markers were incongruent at a significant level, challenging the clonal origins of Foc. Mating type genes were identified in this asexual pathogen Polymorphisms were detected within a Vegetative Compatibility Group (VCG) suggesting non-clonal inheritance and/or sexual recombination in Foc. This research was funded in part by a NIH-NIGMS (National Institutes of Health-National Institute of General Medical Sciences) Grant through the MBRS (Minority Biomedical Research Support), the Department of Biological Sciences and the Tropical Biology Program at FIU. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New designer drugs are constantly emerging onto the illicit drug market and it is often difficult to validate and maintaincomprehensive analytical methods for accurate detection of these compounds. Generally, toxicology laboratories utilize a screening method, such as immunoassay, for the presumptive identification of drugs of abuse. When a positive result occurs, confirmatory methods, such as gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS), are required for more sensitive and specific analyses. In recent years, the need to study the activities of these compounds in screening assays as well as to develop confirmatory techniques to detect them in biological specimens has been recognized. Severe intoxications and fatalities have been encountered with emerging designer drugs, presenting analytical challenges for detection and identification of such novel compounds. The first major task of this research was to evaluate the performance of commercially available immunoassays to determine if designer drugs were cross-reactive. The second major task was to develop and validate a confirmatory method, using LC-MS, to identify and quantify these designer drugs in biological specimens.^ Cross-reactivity towards the cathinone derivatives was found to be minimal. Several other phenethylamines demonstrated cross-reactivity at low concentrations, but results were consistent with those published by the assay manufacturer or as reported in the literature. Current immunoassay-based screening methods may not be ideal for presumptively identifying most designer drugs, including the "bath salts." For this reason, an LC-MS based confirmatory method was developed for 32 compounds, including eight cathinone derivatives, with limits of quantification in the range of 1-10 ng/mL. The method was fully validated for selectivity, matrix effects, stability, recovery, precision, and accuracy. In order to compare the screening and confirmatory techniques, several human specimens were analyzed to demonstrate the importance of using a specific analytical method, such as LC-MS, to detect designer drugs in serum as immunoassays lack cross-reactivity with the novel compounds. Overall, minimal cross-reactivity was observed, highlighting the conclusion that these presumptive screens cannot detect many of the designer drugs and that a confirmatory technique, such as the LC-MS, is required for the comprehensive forensic toxicological analysis of designer drugs.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of smart TVs has reshaped the TV-consumer interaction by combining TVs with mobile-like applications and access to the Internet. However, consumers are still unable to seamlessly interact with the contents being streamed. An example of such limitation is TV shopping, in which a consumer makes a purchase of a product or item displayed in the current TV show. Currently, consumers can only stop the current show and attempt to find a similar item in the Web or an actual store. It would be more convenient if the consumer could interact with the TV to purchase interesting items. ^ Towards the realization of TV shopping, this dissertation proposes a scalable multimedia content processing framework. Two main challenges in TV shopping are addressed: the efficient detection of products in the content stream, and the retrieval of similar products given a consumer-selected product. The proposed framework consists of three components. The first component performs computational and temporal aware multimedia abstraction to select a reduced number of frames that summarize the important information in the video stream. By both reducing the number of frames and taking into account the computational cost of the subsequent detection phase, this component component allows the efficient detection of products in the stream. The second component realizes the detection phase. It executes scalable product detection using multi-cue optimization. Additional information cues are formulated into an optimization problem that allows the detection of complex products, i.e., those that do not have a rigid form and can appear in various poses. After the second component identifies products in the video stream, the consumer can select an interesting one for which similar ones must be located in a product database. To this end, the third component of the framework consists of an efficient, multi-dimensional, tree-based indexing method for multimedia databases. The proposed index mechanism serves as the backbone of the search. Moreover, it is able to efficiently bridge the semantic gap and perception subjectivity issues during the retrieval process to provide more relevant results.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to develop a GIS-based multi-class index overlay model to determine areas susceptible to inland flooding during extreme precipitation events in Broward County, Florida. Data layers used in the method include Airborne Laser Terrain Mapper (ALTM) elevation data, excess precipitation depth determined through performing a Soil Conservation Service (SCS) Curve Number (CN) analysis, and the slope of the terrain. The method includes a calibration procedure that uses "weights and scores" criteria obtained from Hurricane Irene (1999) records, a reported 100-year precipitation event, Doppler radar data and documented flooding locations. Results are displayed in maps of Eastern Broward County depicting types of flooding scenarios for a 100-year, 24-hour storm based on the soil saturation conditions. As expected the results of the multi-class index overlay analysis showed that an increase for the potential of inland flooding could be expected when a higher antecedent moisture condition is experienced. The proposed method proves to have some potential as a predictive tool for flooding susceptibility based on a relatively simple approach.