5 resultados para frequency dependent parameters

em Digital Commons at Florida International University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high frequency physical phase variable electric machine model was developed using FE analysis. The model was implemented in a machine drive environment with hardware-in-the-loop. The novelty of the proposed model is that it is derived based on the actual geometrical and other physical information of the motor, considering each individual turn in the winding. This is the first attempt to develop such a model to obtain high frequency machine parameters without resorting to expensive experimental procedures currently in use. The model was used in a dynamic simulation environment to predict inverter-motor interaction. This includes motor terminal overvoltage, current spikes, as well as switching effects. In addition, a complete drive model was developed for electromagnetic interference (EMI) analysis and evaluation. This consists of the lumped parameter models of different system components, such as cable, inverter, and motor. The lumped parameter models enable faster simulations. The results obtained were verified by experimental measurements and excellent agreements were obtained. A change in the winding arrangement and its influence on the motor high frequency behavior has also been investigated. This was shown to have a little effect on the parameter values and in the motor high frequency behavior for equal number of turns. An accurate prediction of overvoltage and EMI in the design stages of the drive system would reduce the time required for the design modifications as well as for the evaluation of EMC compliance issues. The model can be utilized in the design optimization and insulation selection for motors. Use of this procedure could prove economical, as it would help designers develop and test new motor designs for the evaluation of operational impacts in various motor drive applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca 2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via &agr;-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 ± μM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via α-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 µM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic noise has been investigated in AlxGa1−x N/GaN Modulation-Doped Field Effect Transistors (MODFETs) of submicron dimensions, grown for us by MBE (Molecular Beam Epitaxy) techniques at Virginia Commonwealth University by Dr. H. Morkoç and coworkers. Some 20 devices were grown on a GaN substrate, four of which have leads bonded to source (S), drain (D), and gate (G) pads, respectively. Conduction takes place in the quasi-2D layer of the junction (xy plane) which is perpendicular to the quantum well (z-direction) of average triangular width ∼3 nm. A non-doped intrinsic buffer layer of ∼5 nm separates the Si-doped donors in the AlxGa1−xN layer from the 2D-transistor plane, which affords a very high electron mobility, thus enabling high-speed devices. Since all contacts (S, D, and G) must reach through the AlxGa1−xN layer to connect internally to the 2D plane, parallel conduction through this layer is a feature of all modulation-doped devices. While the shunting effect may account for no more than a few percent of the current IDS, it is responsible for most excess noise, over and above thermal noise of the device. ^ The excess noise has been analyzed as a sum of Lorentzian spectra and 1/f noise. The Lorentzian noise has been ascribed to trapping of the carriers in the AlxGa1−xN layer. A detailed, multitrapping generation-recombination noise theory is presented, which shows that an exponential relationship exists for the time constants obtained from the spectral components as a function of 1/kT. The trap depths have been obtained from Arrhenius plots of log (τT2) vs. 1000/T. Comparison with previous noise results for GaAs devices shows that: (a) many more trapping levels are present in these nitride-based devices; (b) the traps are deeper (farther below the conduction band) than for GaAs. Furthermore, the magnitude of the noise is strongly dependent on the level of depletion of the AlxGa1−xN donor layer, which can be altered by a negative or positive gate bias VGS. ^ Altogether, these frontier nitride-based devices are promising for bluish light optoelectronic devices and lasers; however, the noise, though well understood, indicates that the purity of the constituent layers should be greatly improved for future technological applications. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to analyze the network performance by observing the effect of varying network size and data link rate on one of the most commonly found network configurations. Computer networks have been growing explosively. Networking is used in every aspect of business, including advertising, production, shipping, planning, billing, and accounting. Communication takes place through networks that form the basis of transfer of information. The number and type of components may vary from network to network depending on several factors such as requirement and actual physical placement of the networks. There is no fixed size of the networks and they can be very small consisting of say five to six nodes or very large consisting of over two thousand nodes. The varying network sizes make it very important to study the network performance so as to be able to predict the functioning and the suitability of the network. The findings demonstrated that the network performance parameters such as global delay, load, router processor utilization, router processor delay, etc. are affected. The findings demonstrated that the network performance parameters such as global delay, load, router processor utilization, router processor delay, etc. are affected significantly due to the increase in the size of the network and that there exists a correlation between the various parameters and the size of the network. These variations are not only dependent on the magnitude of the change in the actual physical area of the network but also on the data link rate used to connect the various components of the network.