5 resultados para fossil fuel substitution

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems—stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fossil fuels constitute a significant fraction of the world's energy demand. The burning of fossil fuels emits huge amounts of carbon dioxide into the atmosphere. Therefore, the limited availability of fossil fuel resources and the environmental impact of their use require a change to alternative energy sources or carriers (such as hydrogen) in the foreseeable future. The development of methods to mitigate carbon dioxide emission into the atmosphere is equally important. Hence, extensive research has been carried out on the development of cost-effective technologies for carbon dioxide capture and techniques to establish hydrogen economy. Hydrogen is a clean energy fuel with a very high specific energy content of about 120MJ/kg and an energy density of 10Wh/kg. However, its potential is limited by the lack of environment-friendly production methods and a suitable storage medium. Conventional hydrogen production methods such as Steam-methane-reformation and Coal-gasification were modified by the inclusion of NaOH. The modified methods are thermodynamically more favorable and can be regarded as near-zero emission production routes. Further, suitable catalysts were employed to accelerate the proposed NaOH-assisted reactions and a relation between reaction yield and catalyst size has been established. A 1:1:1 molar mixture of LiAlH 4, NaNH2 and MgH2 were investigated as a potential hydrogen storage medium. The hydrogen desorption mechanism was explored using in-situ XRD and Raman Spectroscopy. Mesoporous metal oxides were assessed for CO2 capture at both power and non-power sectors. A 96.96% of mesoporous MgO (325 mesh size, surface area = 95.08 ± 1.5 m2/g) was converted to MgCO 3 at 350°C and 10 bars CO2. But the absorption capacity of 1h ball milled zinc oxide was low, 0.198 gCO2 /gZnO at 75°C and 10 bars CO2. Interestingly, 57% mass conversion of Fe and Fe 3O4 mixture to FeCO3 was observed at 200°C and 10 bars CO2. MgO, ZnO and Fe3O4 could be completely regenerated at 550°C, 250°C and 350°C respectively. Furthermore, the possible retrofit of MgO and a mixture of Fe and Fe3O 4 to a 300 MWe coal-fired power plant and iron making industry were also evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The amounts, sources and relative ages of inorganic and organic carbon pools were assessed in eight headwater streams draining watersheds dominated by either forest, pasture, cropland or urban development in the lower Chesapeake Bay region (Virginia, USA). Streams were sampled at baseflow conditions six different times over 1 year. The sources and ages of the carbon pools were characterized by isotopic (δ13C and ∆14C) analyses and excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). The findings from this study showed that human land use may alter aquatic carbon cycling in three primary ways. First, human land use affects the sources and ages of DIC by controlling different rates of weathering and erosion. Relative to dissolved inorganic carbon (DIC) in forested streams which originated primarily from respiration of young, 14C-enriched organic matter (OM; δ13C = −22.2 ± 3 ‰; ∆14C = 69 ± 14 ‰), DIC in urbanized streams was influenced more by sedimentary carbonate weathering (δ13C = −12.4 ± 1 ‰; ∆14C = −270 ± 37 ‰) and one of pasture streams showed a greater influence from young soil carbonates (δ13C = −5.7 ± 2.5 ‰; ∆14C = 69 ‰). Second, human land use alters the proportions of terrestrial versus autochthonous/microbial sources of stream water OM. Fluorescence properties of dissolved OM (DOM) and the C:N of particulate OM (POM) suggested that streams draining human-altered watersheds contained greater relative contributions of DOM and POM from autochthonous/microbial sources than forested streams. Third, human land uses can mobilize geologically aged inorganic carbon and enable its participation in contemporary carbon cycling. Aged DOM (∆14C = −248 to −202 ‰, equivalent14C ages of 1,811–2,284 years BP) and POM (∆14C = −90 to −88 ‰, 14C ages of 669–887 years BP) were observed exclusively in urbanized streams, presumably a result of autotrophic fixation of aged DIC (−297 to −244 ‰, 14C age = 2,251–2,833 years BP) from sedimentary shell dissolution and perhaps also watershed export of fossil fuel carbon. This study demonstrates that human land use may have significant impacts on the amounts, sources, ages and cycling of carbon in headwater streams and their associated watersheds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems – stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Black carbon (BC), the incomplete combustion product from biomass and fossil fuel burning, is ubiquitously found in soils, sediments, ice, water and atmosphere. Because of its polyaromatic molecular characteristic, BC is believed to contribute significantly to the global carbon budget as a slow-cycling, refractory carbon pool. However, the mass balance between global BC generation and accumulation does not match, suggesting a removal mechanism of BC to the active carbon pool, most probable in a dissolved form. The presence of BC in waters as part of the dissolved organic matter (DOM) pool was recently confirmed via ultrahigh resolution mass spectrometry, and dissolved black carbon (DBC), a degradation product of charcoal, was found in marine and coastal environments. However, information on the loadings of DBC in freshwater environments and its global riverine flux from terrestrial systems to the oceans remained unclear. The main objectives of this study were to quantify DBC in diverse aquatic ecosystems and to determine its environmental dynamics. Surface water samples were collected from aquatic environments with a spatially significant global distribution, and DBC concentrations were determined by a chemical oxidation method coupled with HPLC detection. While it was clear that biomass burning was the main sources of BC, the translocation mechanism of BC to the dissolved phase was not well understood. Data from the regional studies and the developed global model revealed a strong positive correlation between DBC and dissolved organic carbon (DOC) dynamics, indicating a co-generation and co-translocation between soil OC and BC. In addition, a DOC-assistant DBC translocation mechanism was identified. Taking advantage of the DOC-DBC correlation model, a global riverine DBC flux to oceans on the order of 26.5 Mt C yr-1 (1 Mt = 1012 g) was determined, accounting for 10.6% of the global DOC flux. The results not only indicated that DOC was an important environmental intermediate for BC transfer and storage, but also provided an estimate of a major missing link in the global BC budget. The ever increasing DBC export caused by global warming will change the marine DOM quality and may have important consequences for carbon cycling in marine ecosystem.