2 resultados para forensic computer examination
em Digital Commons at Florida International University
Resumo:
The use of computer assisted instruction (CAI) simulations as an instructional strategy provides nursing students with a critical thinking approach for evaluating risks and benefits and choosing correct alternatives in "safe" patient care situations. It was hypothesized that using CAI simulations during an upper level nursing review course would have a positive effect on the students' posttest scores. Subjects (n = 36) were senior nursing students enrolled in a nursing review course in an undergraduate baccalaureate program. A limitation of the study was the small sample size. The study employed a modified group experimental design using the t test for independent samples. The group who received the CAI simulations during the physiological system review demonstrated a significant increase (p $<$.01) in the posttest score mean when compared to the lecture-discussion group score mean. There was no significant difference between high and low clinical grade point average (GPA) students in the CAI and lecture-discussion groups and their score means on the posttest. However, score mean differences of the low clinical GPA students showed a greater increase for the CAI group than the lecture-discussion group. There was no significant difference between the groups in their system content subscore means on the exit examination completed three weeks later. It was concluded that CAI simulations are as effective as lecture-discussion in assisting upper level students to process information for clinical decision making. CAI simulations can be considered as an instructional strategy to supplement or replace lecture content during a review course, allowing more efficient use of faculty time. It is recommended that the study be repeated using a larger sample size. Further investigations are recommended in comparing the effectiveness of computer software formats and various instructional strategies for other learning situations and student populations. ^
Resumo:
Many students are entering colleges and universities in the United States underprepared in mathematics. National statistics indicate that only approximately one-third of students in developmental mathematics courses pass. When underprepared students repeatedly enroll in courses that do not count toward their degree, it costs them money and delays graduation. This study investigated a possible solution to this problem: Whether using a particular computer assisted learning strategy combined with using mastery learning techniques improved the overall performance of students in a developmental mathematics course. Participants received one of three teaching strategies: (a) group A was taught using traditional instruction with mastery learning supplemented with computer assisted instruction, (b) group B was taught using traditional instruction supplemented with computer assisted instruction in the absence of mastery learning and, (c) group C was taught using traditional instruction without mastery learning or computer assisted instruction. Participants were students in MAT1033, a developmental mathematics course at a large public 4-year college. An analysis of covariance using participants' pretest scores as the covariate tested the null hypothesis that there was no significant difference in the adjusted mean final examination scores among the three groups. Group A participants had significantly higher adjusted mean posttest score than did group C participants. A chi-square test tested the null hypothesis that there were no significant differences in the proportions of students who passed MAT1033 among the treatment groups. It was found that there was a significant difference in the proportion of students who passed among all three groups, with those in group A having the highest pass rate and those in group C the lowest. A discriminant factor analysis revealed that time on task correctly predicted the passing status of 89% of the participants. ^ It was concluded that the most efficacious strategy for teaching developmental mathematics was through the use of mastery learning supplemented by computer-assisted instruction. In addition, it was noted that time on task was a strong predictor of academic success over and above the predictive ability of a measure of previous knowledge of mathematics.^