7 resultados para foil
em Digital Commons at Florida International University
Resumo:
Previous research has examined the validity of behavioral assumptions underlying the presumed effectiveness of safeguards against erroneous conviction resulting from mistaken eyewitness identification. In keeping with this agenda, this study examined juror sensitivity to lineup suggestiveness in the form of foil, instruction, and presentation biases and whether expert psychological testimony further sensitizes jurors to the factors that influence the likelihood of false identifications. One hundred and sixty jury eligible citizens watched versions of a videotaped trial that included information about the identification of the defendant by an eyewitness and that varied the suggestiveness of the eyewitness identification procedure. In addition, half of the mock-jurors heard the testimony of an expert psychologist regarding the factors that influence lineup suggestiveness. Mock-jurors rendered individual verdicts, rated the defendant's culpability and the suggestiveness and fairness of the identification procedure. Results indicated that jurors are somewhat sensitive to foil bias but are insensitive to instruction and presentation biases. No evidence was found to suggest that expert testimony leads to juror skepticism or juror sensitization. These results question the effectiveness of cross-examination and expert testimony as safeguards against erroneous convictions resulting from mistaken identification. ^
Resumo:
Structural vibration control is of great importance. Current active and passive vibration control strategies usually employ individual elements to fulfill this task, such as viscoelastic patches for providing damping, transducers for picking up signals and actuators for inputting actuating forces. The goal of this dissertation work is to design, manufacture, investigate and apply a new type of multifunctional composite material for structural vibration control. This new composite, which is based on multi-walled carbon nanotube (MWCNT) film, is potentially to function as free layer damping treatment and strain sensor simultaneously. That is, the new material integrates the transducer and the damping patch into one element. The multifunctional composite was prepared by sandwiching the MWCNT film between two adhesive layers. Static sensing test indicated that the MWCNT film sensor resistance changes almost linearly with the applied load. Sensor sensitivity factors were comparable to those of the foil strain gauges. Dynamic test indicated that the MWCNT film sensor can outperform the foil strain gage in high frequency ranges. Temperature test indicated the MWCNT sensor had good temperature stability over the range of 237 K-363 K. The Young’s modulus and shear modulus of the MWCNT film composite were acquired by nanoindentation test and direct shear test, respectively. A free vibration damping test indicated that the MWCNT composite sensor can also provide good damping without adding excessive weight to the base structure. A new model for sandwich structural vibration control was then proposed. In this new configuration, a cantilever beam covered with MWCNT composite on top and one layer of shape memory alloy (SMA) on the bottom was used to illustrate this concept. The MWCNT composite simultaneously serves as free layer damping and strain sensor, and the SMA acts as actuator. Simple on-off controller was designed for controlling the temperature of the SMA so as to control the SMA recovery stress as input and the system stiffness. Both free and forced vibrations were analyzed. Simulation work showed that this new configuration for sandwich structural vibration control was successful especially for low frequency system.
Resumo:
Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes. Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ∼5.7 cm2/V·s at low operation voltage of <5 V and a low turn-on voltage of ∼0.5 V with a sub threshold swing of ∼85 mV/decade. Bottom gated FET fabricated from ZNWs exhibit a very high on-to-off ratio (∼106) and mobility (∼28 cm2/V·s). A bottom gated FET showed large hysteresis of ∼5.0 to 8.0 V which was significantly reduced to ∼1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ∼46% and a minimum detection limit of ∼1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases. Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene/polymer film exhibited a high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ∼88.80% light transmittance and ∼1.1742Ω/sq k sheet resistance. The application of a graphene/polymer film as a flexible and transparent electrode for field emission displays was demonstrated.
Resumo:
The motion-to-suppress safeguard is designed to prevent false eyewitness identifications from leading to wrongful convictions. This safeguard is effective only if judges are sensitive to factors that influence lineup suggestiveness. The present study assessed judicial sensitivity to foil, instruction, and presentation biases. Judges $(N=99)$ read a description of a hypothetical crime, perpetrator, and identification procedure, followed by a motion to suppress the identification. Judges completed a questionnaire in which they ruled on the motion and rated the lineup's suggestiveness and fairness. Foil bias and instruction bias influenced judges' rulings and lineup evaluations as predicted. Hypotheses concerning presentation bias were not supported. Results suggest a need to standardize and record identification procedures and to further educate judges about psychological research on eyewitness memory. ^
Resumo:
Lineup procedures have recently garnered extensive empirical attention, in an effort to reduce the number of mistaken identifications that plague the criminal justice system. Relatively little attention, however, has been paid to the influence of the lineup constructor or the lineup construction technique on the quality of the lineup. This study examined whether the cross-race effect has an influence on the quality of lineups constructed using a match-to-suspect or match-to-description technique in a series of three phases. Participants generated descriptions of same- and other-race targets in Phase 1, which were used in Phase 2. In Phase 2, participants were asked to create lineups for own-race targets and other-race targets using one of two techniques. The lineups created in this phase were examined for lineup quality in Phase 3 by calculating lineup fairness assessments through the use of a mock witness paradigm. ^ Overall, the results of these experiment phases suggest that the race of those involved in the lineup construction process influences lineups. There was no difference in witness description accuracy in Phase 1, which ran counter to predictions based on the cross-race effect. The cross-race effect was observed, however, in Phases 2 and 3. The lineup construction technique used also influenced several of the process measures, selection estimates, and fairness judgments in Phase 2. Interestingly, the presence of the cross-race effect was in the opposite direction as predicted for some measures in both phases. In Phase 2, the cross-race effect was as predicted for number of foils viewed, but in the opposite direction for average time spent viewing each foil. In Phase 3, the cross-race effect was in the opposite direction than predicted, with higher levels of lineup fairness in other-race lineups. The practical implications of these findings are discussed in relation to lineup fairness within the legal system. ^
Resumo:
This research aims to explore the place of marginality (or that which is not the immediate focus of narrative) in the context of the play and through the examination of the characters of Fortinbras and Horatio, in William Shakespeare’s Hamlet. The intended outcome is to encourage diversified perspectives and approaches to the play by focusing on the marginal themes and/or characters. The chapters address the characters of Fortinbras and Horatio; the first inverts the protagonist/foil relationship by reading Hamlet as a foil to Fortinbras, while the second uses Freud’s “The Uncanny” as a way to understand Horatio’s role in the play, as its uncanniest phenomena. Both are marginal to the text, but both are significant to the understanding of the text. Essentially, the objective is to encourage readings of the play, and of narratives, that appreciate the complexity of marginality, in order to broaden the language for future research.
Resumo:
Increased device density, switching speeds of integrated circuits and decrease in package size is placing new demands for high power thermal-management. The convectional method of forced air cooling with passive heat sink can handle heat fluxes up-to 3-5W/cm2; however current microprocessors are operating at levels of 100W/cm2, This demands the usage of novel thermal-management systems. In this work, water-cooling systems with active heat sink are embedded in the substrate. The research involved fabricating LTCC substrates of various configurations - an open-duct substrate, the second with thermal vias and the third with thermal vias and free-standing metal columns and metal foil. Thermal testing was performed experimentally and these results are compared with CFD results. An overall thermal resistance for the base substrate is demonstrated to be 3.4oC/W-cm2. Addition of thermal vias reduces the effective resistance of the system by 7times and further addition of free standing columns reduced it by 20times.