17 resultados para finite-time stability
em Digital Commons at Florida International University
Resumo:
The current mobile networks don't offer sufficient data rates to support multimedia intensive applications in development for multifunctional mobile devices. Ultra wideband (UWB) wireless technology is being considered as the solution to overcome data rate bottlenecks in the current mobile networks. UWB is able to achieve such high data transmission rates because it transmits data over a very large chunk of the frequency spectrum. As currently approved by the U.S. Federal Communication Commission it utilizes 7.5 GHz of spectrum between 3.1 GHz and 10.6 GHz. ^ Successful transmission and reception of information data using UWB wireless technology in mobile devices, requires an antenna that has linear phase, low dispersion and a voltage standing wave ratio (VSWR) ≤ 2 throughout the entire frequency band. Compatibility with an integrated circuit requires an unobtrusive and electrically small design. The previous techniques that have been used to optimize the performance of UWB wireless systems, involve proper design of source pulses for optimal UWB performance. The goal of this work is directed towards the designing of antennas for personal communication devices, with optimal UWB bandwidth performance. Several techniques are proposed for optimal UWB bandwidth performance of the UWB antenna designs in this Ph.D. dissertation. ^ This Ph.D. dissertation presents novel UWB antenna designs for personal communication devices that have been characterized and optimized using the finite difference time domain (FDTD) technique. The antenna designs reported in this research are physically compact, planar for low profile use, with sufficient impedance bandwidth (>20%), antenna input impedance of 50-Ω, and an omni-directional (±1.5 dB) radiation pattern in the operating bandwidth. ^
Resumo:
Antenna design is an iterative process in which structures are analyzed and changed to comply with certain performance parameters required. The classic approach starts with analyzing a "known" structure, obtaining the value of its performance parameter and changing this structure until the "target" value is achieved. This process relies on having an initial structure, which follows some known or "intuitive" patterns already familiar to the designer. The purpose of this research was to develop a method of designing UWB antennas. What is new in this proposal is that the design process is reversed: the designer will start with the target performance parameter and obtain a structure as the result of the design process. This method provided a new way to replicate and optimize existing performance parameters. The base of the method was the use of a Genetic Algorithm (GA) adapted to the format of the chromosome that will be evaluated by the Electromagnetic (EM) solver. For the electromagnetic study we used XFDTD™ program, based in the Finite-Difference Time-Domain technique. The programming portion of the method was created under the MatLab environment, which serves as the interface for converting chromosomes, file formats and transferring of data between the XFDTD™ and GA. A high level of customization had to be written into the code to work with the specific files generated by the XFDTD™ program. Two types of cost functions were evaluated; the first one seeking broadband performance within the UWB band, and the second one searching for curve replication of a reference geometry. The performance of the method was evaluated considering the speed provided by the computer resources used. Balance between accuracy, data file size and speed of execution was achieved by defining parameters in the GA code as well as changing the internal parameters of the XFDTD™ projects. The results showed that the GA produced geometries that were analyzed by the XFDTD™ program and changed following the search criteria until reaching the target value of the cost function. Results also showed how the parameters can change the search criteria and influence the running of the code to provide a variety of geometries.
Resumo:
A two-dimensional, 2D, finite-difference time-domain (FDTD) method is used to analyze two different models of multi-conductor transmission lines (MTL). The first model is a two-conductor MTL and the second is a threeconductor MTL. Apart from the MTL's, a three-dimensional, 3D, FDTD method is used to analyze a three-patch microstrip parasitic array. While the MTL analysis is entirely in time-domain, the microstrip parasitic array is a study of scattering parameter Sn in the frequency-domain. The results clearly indicate that FDTD is an efficient and accurate tool to model and analyze multiconductor transmission line as well as microstrip antennas and arrays.
Resumo:
The physics of self-organization and complexity is manifested on a variety of biological scales, from large ecosystems to the molecular level. Protein molecules exhibit characteristics of complex systems in terms of their structure, dynamics, and function. Proteins have the extraordinary ability to fold to a specific functional three-dimensional shape, starting from a random coil, in a biologically relevant time. How they accomplish this is one of the secrets of life. In this work, theoretical research into understanding this remarkable behavior is discussed. Thermodynamic and statistical mechanical tools are used in order to investigate the protein folding dynamics and stability. Theoretical analyses of the results from computer simulation of the dynamics of a four-helix bundle show that the excluded volume entropic effects are very important in protein dynamics and crucial for protein stability. The dramatic effects of changing the size of sidechains imply that a strategic placement of amino acid residues with a particular size may be an important consideration in protein engineering. Another investigation deals with modeling protein structural transitions as a phase transition. Using finite size scaling theory, the nature of unfolding transition of a four-helix bundle protein was investigated and critical exponents for the transition were calculated for various hydrophobic strengths in the core. It is found that the order of the transition changes from first to higher order as the strength of the hydrophobic interaction in the core region is significantly increased. Finally, a detailed kinetic and thermodynamic analysis was carried out in a model two-helix bundle. The connection between the structural free-energy landscape and folding kinetics was quantified. I show how simple protein engineering, by changing the hydropathy of a small number of amino acids, can enhance protein folding by significantly changing the free energy landscape so that kinetic traps are removed. The results have general applicability in protein engineering as well as understanding the underlying physical mechanisms of protein folding. ^
Resumo:
Since the 1950s, the theory of deterministic and nondeterministic finite automata (DFAs and NFAs, respectively) has been a cornerstone of theoretical computer science. In this dissertation, our main object of study is minimal NFAs. In contrast with minimal DFAs, minimal NFAs are computationally challenging: first, there can be more than one minimal NFA recognizing a given language; second, the problem of converting an NFA to a minimal equivalent NFA is NP-hard, even for NFAs over a unary alphabet. Our study is based on the development of two main theories, inductive bases and partials, which in combination form the foundation for an incremental algorithm, ibas, to find minimal NFAs. An inductive basis is a collection of languages with the property that it can generate (through union) each of the left quotients of its elements. We prove a fundamental characterization theorem which says that a language can be recognized by an n-state NFA if and only if it can be generated by an n-element inductive basis. A partial is an incompletely-specified language. We say that an NFA recognizes a partial if its language extends the partial, meaning that the NFA’s behavior is unconstrained on unspecified strings; it follows that a minimal NFA for a partial is also minimal for its language. We therefore direct our attention to minimal NFAs recognizing a given partial. Combining inductive bases and partials, we generalize our characterization theorem, showing that a partial can be recognized by an n-state NFA if and only if it can be generated by an n-element partial inductive basis. We apply our theory to develop and implement ibas, an incremental algorithm that finds minimal partial inductive bases generating a given partial. In the case of unary languages, ibas can often find minimal NFAs of up to 10 states in about an hour of computing time; with brute-force search this would require many trillions of years.
Resumo:
The relationship between reef corals and endosymbiotic dinoflagellates is fundamental to the existence of coral reefs. To evaluate the fidelity of coral-Symbiodinium mutualisms, corals maintained in aquaria for years were analyzed by denaturant gradient gel electrophoresis (DGGE). Comparing Symbiodinium populations of captive aquarium colonies with known associations in nature is a practical way of examining partner flexibility. The finding of "normal" symbiont populations in corals existing under highly variable conditions supports the premise that most coral colonies possess stable associations. High sensitivity real-time PCR (rtPCR) was used to evaluate background populations of the putatively stress-tolerant Symbiodinium D in reef corals of the Caribbean. Analyses of samples collected during periods of environmental stability indicate the ability of Symbiodinium D to associate with a wider diversity of host taxa than previously recognized. To gain a broader perspective with regard to the ecology of Symbiodinium D1a, rtPCR and DGGE were used to evaluate the symbiont populations of reef corals from Barbados before and after the 2005 mass coral bleaching. Background populations were observed in 56% of the host genera prior to observations of bleaching. These findings indicate that 'stress', not 'bleaching', caused the displacement of 'natural' symbiont population and the opportunistic proliferation of D1a in many host taxa. Of the 12 host taxa monitored before and after the bleaching event, there was a 40% increase in colonies hosting Symbiodinium D1a. Together, these studies elucidate the mechanism responsible for recent observations reporting the emergence of Symbiodinium D following thermal disturbances. These observations are now most easily explained as the disproportionate growth of existing in hospite symbiont populations, rather than novel symbiont acquisition subsequent to bleaching. To evaluate the comparative "fitness" of corals able to host multiple symbiont types, rates of calcification were measured in P. verrucosa hosting either Symbiodinium C1b-c or D1 at elevated temperature. Rates of calcification decreased significantly for both host-symbiont combinations, but differences attributable to symbiont composition were not detected. This research improves our knowledge of the symbiosis biology and ecology of reef corals and contributes information necessary to most accurately predict the response of these ecosystems to global climate changes.
Resumo:
The current study examined the role of three important components in the use of structured employment interviewing in performance prediction: construct bandwidth, observed communication skill, and the stability/dynamicity of performance criteria over time. A matched sample of 242 hospitality managers was derived from a field data set provided by a large hospitality management organization. Interview data and two years of performance appraisal data were provided. Bandwidth analysis demonstrated only minimal differences in prediction between matched predictor-criterion pairs compared with predictor to overall aggregate ratings (unmatched). The communication skill analysis revealed that this interviewer rated observation significantly predicted a number of the individual performance dimensions as well as overall performance over time. Of the five interview items, the strongest overall predictor of performance was interviewer rated communication skill. The stability/dynamicity analyses demonstrated the performance criteria to be generally stable over the two year period examined, which provides support for the long held notion that performance criteria is stabile over time. However, there were two exceptions. The interview dimension customer service orientation had shifting relationships over time with four of the criteria over the two year period. The performance criteria employee development also demonstrated some instability in its relationships with predictors. Thus, some evidence of dynamicity in performance criteria was revealed. Interestingly, both of the most noteworthy findings in the study involved items that were rated differently than the others in the study. The rated interview item communication skill and the rated performance criteria client satisfaction were ratings that involved a more direct level of observation. Additional analyses also revealed evidence of a general factor of performance. These two themes are more fully covered in the discussion.
Resumo:
This dissertation was an analysis of the root and proximate causes of the September 2002 civil war in Côte d’Ivoire. The central question of this study was: Why did Côte d’Ivoire, which was relatively stable under President Houphouët-Boigny, suddenly begin to experience political violence in the 1990s and an explosion in 2002? Côte d’Ivoire was an interesting case because it was stable for a long period of time, apparently making it an infertile ground for conflict. It was also interesting for comparative purposes because of the fact that several states in West Africa (for instance, Benin, Togo, and Ghana) have experienced military coups but not have civil wars. Finally, this case was an opportunity to revisit the debate on the causes of civil wars in the African context. Chapter one has outlined the entire dissertation project and contextualized the analysis that follows in the subsequent chapters. Chapter two has reviewed the literature on civil wars in general, identified the different types of civil wars, and the type the Ivoiran war is. Chapter three has examined the domestic and international political economy as a source of the civil violence in Côte d’Ivoire. Chapter four has examined the role of ethnicity and region as identities of the war, while chapter five has analyzed the role of the foreign relations in the civil war, as well as the regional political context. Chapter six has distinguished between the root and proximate causes of the Ivoirian civil war, made judgments about the relative weight of the various causes, and the extent to which the weight of the causes can be measured. The study found that the “Ivoirité” was the most important trigger of the civil war in Côte d’Ivoire. The overall conclusion of my dissertation was that the September 2002 crisis in that country was a political crisis which occured in the context of a political reform. It first started with succession problems in 1993 followed by the controversial elections in 1995 and 2000. Later, this electoral politics spread beyond electoral issues, namely citizenship matters.
Design optimization of modern machine drive systems for maximum fault tolerant and optimal operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^
Resumo:
Context: Core strength training (CST) has been popular in the fitness industry for a decade. Although strong core muscles are believed to enhance athletic performance, only few scientific studies have been conducted to identify the effectiveness of CST on improving athletic performance. Objective: Identify the effects of a 6-wk CST on running kinetics, lower extremity stability, and running performance in recreational and competitive runners. Design and Setting: A test-retest, randomized control design was used to assess the effect of CST and no CST on ground reaction force (GRF), lower extremity stability scores, and running performance. Participants: Twenty-eight healthy adults (age, 36.9+9.4yrs, height, 168.4+9.6cm, mass, 70.1+15.3kg) were recruited and randomly divided into two groups. Main outcome Measures: GRF was determined by calculating peak impact vertical GRF (vGRF), peak active vGRF, duration of the breaking or horizontal GRF (hGRF), and duration of the propulsive hGRF as measured while running across a force plate. Lower extremity stability in three directions (anterior, posterior, lateral) was assessed using the Star Excursion Balance Test (SEBT). Running performance was determined by 5000 meter run measured on selected outdoor tracks. Six 2 (time) X 2 (condition) mixed-design ANOVA were used to determine if CST influences on each dependent variable, p < .05. Results: No significant interactions were found for any kinetic variables and SEBT score, p>.05. But 5000m run time showed significant interaction, p < .05. SEBT scores improved in both groups, but more in the experimental group. Conclusion: CST did not significantly influence kinetic efficiency and lower extremity stability, but did influence running performance.
Resumo:
During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.
Resumo:
Since the 1950s, the theory of deterministic and nondeterministic finite automata (DFAs and NFAs, respectively) has been a cornerstone of theoretical computer science. In this dissertation, our main object of study is minimal NFAs. In contrast with minimal DFAs, minimal NFAs are computationally challenging: first, there can be more than one minimal NFA recognizing a given language; second, the problem of converting an NFA to a minimal equivalent NFA is NP-hard, even for NFAs over a unary alphabet. Our study is based on the development of two main theories, inductive bases and partials, which in combination form the foundation for an incremental algorithm, ibas, to find minimal NFAs. An inductive basis is a collection of languages with the property that it can generate (through union) each of the left quotients of its elements. We prove a fundamental characterization theorem which says that a language can be recognized by an n-state NFA if and only if it can be generated by an n-element inductive basis. A partial is an incompletely-specified language. We say that an NFA recognizes a partial if its language extends the partial, meaning that the NFA's behavior is unconstrained on unspecified strings; it follows that a minimal NFA for a partial is also minimal for its language. We therefore direct our attention to minimal NFAs recognizing a given partial. Combining inductive bases and partials, we generalize our characterization theorem, showing that a partial can be recognized by an n-state NFA if and only if it can be generated by an n-element partial inductive basis. We apply our theory to develop and implement ibas, an incremental algorithm that finds minimal partial inductive bases generating a given partial. In the case of unary languages, ibas can often find minimal NFAs of up to 10 states in about an hour of computing time; with brute-force search this would require many trillions of years.
Resumo:
This dissertation was an analysis of the root and proximate causes of the September 2002 civil war in Côte d’Ivoire. The central question of this study was: Why did Côte d’Ivoire, which was relatively stable under President Houphouët-Boigny, suddenly begin to experience political violence in the 1990s and an explosion in 2002? Côte d’Ivoire was an interesting case because it was stable for a long period of time, apparently making it an infertile ground for conflict. It was also interesting for comparative purposes because of the fact that several states in West Africa (for instance, Benin, Togo, and Ghana) have experienced military coups but not have civil wars. Finally, this case was an opportunity to revisit the debate on the causes of civil wars in the African context. Chapter one has outlined the entire dissertation project and contextualized the analysis that follows in the subsequent chapters. Chapter two has reviewed the literature on civil wars in general, identified the different types of civil wars, and the type the Ivoiran war is. Chapter three has examined the domestic and international political economy as a source of the civil violence in Côte d’Ivoire. Chapter four has examined the role of ethnicity and region as identities of the war, while chapter five has analyzed the role of the foreign relations in the civil war, as well as the regional political context. Chapter six has distinguished between the root and proximate causes of the Ivoirian civil war, made judgments about the relative weight of the various causes, and the extent to which the weight of the causes can be measured. The study found that the “Ivoirité” was the most important trigger of the civil war in Côte d’Ivoire. The overall conclusion of my dissertation was that the September 2002 crisis in that country was a political crisis which occured in the context of a political reform. It first started with succession problems in 1993 followed by the controversial elections in 1995 and 2000. Later, this electoral politics spread beyond electoral issues, namely citizenship matters.
Resumo:
Research into the dynamicity of job performance criteria has found evidence suggesting the presence of rank-order changes to job performance scores across time as well as intraindividual trajectories in job performance scores across time. These findings have influenced a large body of research into (a) the dynamicity of validities of individual differences predictors of job performance and (b) the relationship between individual differences predictors of job performance and intraindividual trajectories of job performance. In the present dissertation, I addressed these issues within the context of the Five Factor Model of personality. The Five Factor Model is arranged hierarchically, with five broad higher-order factors subsuming a number of more narrowly tailored personality facets. Research has debated the relative merits of broad versus narrow traits for predicting job performance, but the entire body of research has addressed the issue from a static perspective -- by examining the relative magnitude of validities of global factors versus their facets. While research along these lines has been enlightening, theoretical perspectives suggest that the validities of global factors versus their facets may differ in their stability across time. Thus, research is needed to not only compare the relative magnitude of validities of global factors versus their facets at a single point in time, but also to compare the relative stability of validities of global factors versus their facets across time. Also necessary to advance cumulative knowledge concerning intraindividual performance trajectories is research into broad vs. narrow traits for predicting such trajectories. In the present dissertation, I addressed these issues using a four-year longitudinal design. The results indicated that the validities of global conscientiousness were stable across time, while the validities of conscientiousness facets were more likely to fluctuate. However, the validities of emotional stability and extraversion facets were no more likely to fluctuate across time than those of the factors. Finally, while some personality factors and facets predicted performance intercepts (i.e., performance at the first measurement occasion), my results failed to indicate a significant effect of any personality variable on performance growth. Implications for research and practice are discussed.
Design Optimization of Modern Machine-drive Systems for Maximum Fault Tolerant and Optimal Operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.