7 resultados para fauna and flora

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estuarine productivity is highly dependent on the freshwater sources of the estuary. In Florida Bay, Taylor Slough was historically the main source of fresh water. Beginning in about 1960, and culminating with the completion of the South Dade Conveyance System in 1984, water management practice began to change the quantity and distribution of flow from Taylor Slough into Northeastern Florida Bay. These practices altered salinity and hydrologic parameters that had measurable negative impacts on vertebrate fauna and their habitats. Here, I review those impacts from published and unpublished literature and anecdotal observations. Almost all vertebrates covered in this review have shown some form of population decline since 1984; most of the studies implicate declines in food resources as the main stressor on their populations. My conclusion is that the diversion of fresh water resulted in an ecological cascade starting with hydrologic stresses on primary then secondary producers culminating in population declines at the top of the food web.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OF TAFFETA AND SOIL is a collection of poetry unified through images of Argentinean and Floridian soil, flora, and fauna, and by themes of geographic and emotional dislocation, memory, and the quest for home. These images are brought forth in lyrical poems that question the growth and settling of a romantic partnership, domestic turmoil and resolution, and the constant tension between self and community. Mostly written in free verse, the collection also utilizes forms such as prose poem, haiku, and sonnet, for more formal unity. Section one chronicles and explores a romantic relationship through attraction, passion, disappointment, and self-awareness. Section two is a long poem that centers on the speaker’s continuous struggle to come to terms with her present adult life while still remembering and idealizing a homeland. Finally, the collection ends with two sections that work toward self-acceptance, forgiveness, and evolution via community, family, travel and nature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent research makes clear that much of the Everglade’s flora and fauna have evolved to tolerate or require frequent fires. Nevertheless, restoration of the Everglades has thus far been conceptualized as primarily a water reallocation project. These two forces are directly linked by the influence of water flows on fire fuel moisture content, and are indirectly linked through a series of complex feedback loops. This interaction is made more complex by the alteration and compartmentalization of current water flows and fire regimes, the lack of communication between water and fire management agencies, and the already imperiled state of many local species. It is unlikely, therefore, that restoring water flows will automatically restore the appropriate fire regimes, leaving the prospect of successful restoration in some doubt. The decline of the Cape Sable seaside sparrow, and its potential for recovery, illustrates the complexity of the situation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within Big Cypress National Preserve (BICY), oak-dominated forests and woodlands as well as tropical and temperate hardwood hammocks are integral components of the landscape and are biodiversity hotpots for both flora and fauna. These broadleaved forest communities serve as refugia for many of the Preserve’s wildlife species during prolonged flooding and fires. However, both prolonged flooding and severe fires, which are important and necessary disturbance vectors within this landscape, can have deleterious effects on these forested communities. This is particularly true in the case of fires, which under extreme conditions associated with drought and elevated fuel loads, can burn through these forested communities consuming litter and understory vegetation and top killing most, if not all, of the trees present.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. ^ To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. ^ As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. ^ My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.