14 resultados para explosive boiling
em Digital Commons at Florida International University
Resumo:
Current commercially available mimics contain varying amounts of either the actual explosive/drug or the chemical compound of suspected interest by biological detectors. As a result, there is significant interest in determining the dominant chemical odor signatures of the mimics, often referred to as pseudos, particularly when compared to the genuine contraband material. This dissertation discusses results obtained from the analysis of drug and explosive headspace related to the odor profiles as recognized by trained detection canines. Analysis was performed through the use of headspace solid phase microextraction in conjunction with gas chromatography mass spectrometry (HS-SPME-GC-MS). Upon determination of specific odors, field trials were held using a combination of the target odors with COMPS. Piperonal was shown to be a dominant odor compound in the headspace of some ecstasy samples and a recognizable odor mimic by trained detection canines. It was also shown that detection canines could be imprinted on piperonal COMPS and correctly identify ecstasy samples at a threshold level of approximately 100ng/s. Isosafrole and/or MDP-2-POH show potential as training aid mimics for non-piperonal based MDMA. Acetic acid was shown to be dominant in the headspace of heroin samples and verified as a dominant odor in commercial vinegar samples; however, no common, secondary compound was detected in the headspace of either. Because of the similarities detected within respective explosive classes, several compounds were chosen for explosive mimics. A single based smokeless powder with a detectable level of 2,4-dinitrotoluene, a double based smokeless powder with a detectable level of nitroglycerine, 2-ethyl-1-hexanol, DMNB, ethyl centralite and diphenylamine were shown to be accurate mimics for TNT-based explosives, NG-based explosives, plastic explosives, tagged explosives, and smokeless powders, respectively. The combination of these six odors represents a comprehensive explosive odor kit with positive results for imprint on detection canines. As a proof of concept, the chemical compound PFTBA showed promise as a possible universal, non-target odor compound for comparison and calibration of detection canines and instrumentation. In a comparison study of shape versus vibration odor theory, the detection of d-methyl benzoate and methyl benzoate was explored using canine detectors. While results did not overwhelmingly substantiate either theory, shape odor theory provides a better explanation of the canine and human subject responses.
Resumo:
Current commercially available mimics contain varying amounts of either the actual explosive/drug or the chemical compound of suspected interest by biological detectors. As a result, there is significant interest in determining the dominant chemical odor signatures of the mimics, often referred to as pseudos, particularly when compared to the genuine contraband material. This dissertation discusses results obtained from the analysis of drug and explosive headspace related to the odor profiles as recognized by trained detection canines. Analysis was performed through the use of headspace solid phase microextraction in conjunction with gas chromatography mass spectrometry (HS-SPME-GC-MS). Upon determination of specific odors, field trials were held using a combination of the target odors with COMPS. Piperonal was shown to be a dominant odor compound in the headspace of some ecstasy samples and a recognizable odor mimic by trained detection canines. It was also shown that detection canines could be imprinted on piperonal COMPS and correctly identify ecstasy samples at a threshold level of approximately 100ng/s. Isosafrole and/or MDP-2-POH show potential as training aid mimics for non-piperonal based MDMA. Acetic acid was shown to be dominant in the headspace of heroin samples and verified as a dominant odor in commercial vinegar samples; however, no common, secondary compound was detected in the headspace of either. Because of the similarities detected within respective explosive classes, several compounds were chosen for explosive mimics. A single based smokeless powder with a detectable level of 2,4-dinitrotoluene, a double based smokeless powder with a detectable level of nitroglycerine, 2-ethyl-1-hexanol, DMNB, ethyl centralite and diphenylamine were shown to be accurate mimics for TNT-based explosives, NG-based explosives, plastic explosives, tagged explosives, and smokeless powders, respectively. The combination of these six odors represents a comprehensive explosive odor kit with positive results for imprint on detection canines. As a proof of concept, the chemical compound PFTBA showed promise as a possible universal, non-target odor compound for comparison and calibration of detection canines and instrumentation. In a comparison study of shape versus vibration odor theory, the detection of d-methyl benzoate and methyl benzoate was explored using canine detectors. While results did not overwhelmingly substantiate either theory, shape odor theory provides a better explanation of the canine and human subject responses.
Resumo:
The potential of solid phase microextraction (SPME) in the analysis of explosives is demonstrated. A sensitive, rapid, solventless and inexpensive method for the analysis of explosives and explosive odors from solid and liquid samples has been optimized using SPME followed by HPLC and GC/ECD. SPME involves the extraction of the organic components in debris samples into sorbent-coated silica fibers, which can be transferred directly to the injector of a gas chromatograph. SPME/HPLC requires a special desorption apparatus to elute the extracted analyte onto the column at high pressure. Results for use of GC/ECD is presented and compared to the results gathered by using HPLC analysis. The relative effects of controllable variables including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time have been optimized for various high explosives. ^
Resumo:
Fire debris evidence is submitted to crime laboratories to determine if an ignitable liquid (IL) accelerant was used to commit arson. An ignitable liquid residue (ILR) may be difficult to analyze due to interferences, complex matrices, degradation, and low concentrations of analytes. Debris from an explosion and pre-detonated explosive compounds are not trivial to detect and identify due to sampling difficulties, complex matrices, and extremely low amounts (nanogram) of material present. The focus of this research is improving the sampling and detection of ILR and explosives through enhanced sensitivity, selectivity, and field portable instrumentation. Solid Phase MicroExtraction (SPME) enhanced the extraction of ILR by two orders of magnitude over conventional activated charcoal strip (ACS) extraction. Gas chromatography tandem mass spectrometry (GC/MS/MS) improved sensitivity of ILR by one order of magnitude and explosives by two orders of magnitude compared to gas chromatography mass spectrometry (GC/MS). Improvements in sensitivity were attributed to enhanced selectivity. An interface joining SPME to ion mobility spectrometry (IMS) has been constructed and evaluated to improve field detection of hidden explosives. The SPME-IMS interface improved the detection of volatile and semi-volatile explosive compounds and successfully adapted the IMS from a particle sampler into a vapor sampler. ^
Resumo:
The use of canines as a method of detection of explosives is well established worldwide and those applying this technology range from police forces and law enforcement to humanitarian agencies in the developing world. Despite the recent surge in publication of novel instrumental sensors for explosives detection, canines are still regarded by many to be the most effective real-time field method of explosives detection. However, unlike instrumental methods, currently it is difficult to determine detection levels, perform calibration of the canines' ability or produce scientifically valid quality control checks. Accordingly, amongst increasingly strict requirements regarding forensic evidence admission such as Frye and Daubert, there is a need for better scientific understanding of the process of canine detection. ^ When translated to the field of canine detection, just like any instrumental technique, peer reviewed publication of the reliability, success and error rates, is required for admissibility. Commonly training is focussed towards high explosives such as TNT and Composition 4, and the low explosives such as Black and Smokeless Powders are added often only for completeness. ^ Headspace analyses of explosive samples, performed by Solid Phase Microextraction (SPME) paired with Gas Chromatography - Mass Spectrometry (GC-MS), and Gas Chromatography - Electron Capture Detection (GC-ECD) was conducted, highlighting common odour chemicals. The odour chemicals detected were then presented to previously trained and certified explosives detection canines, and the activity/inactivity of the odour determined through field trials and experiments. ^ It was demonstrated that TNT and cast explosives share a common odour signature, and the same may be said for plasticized explosives such as Composition C-4 and Deta Sheet. Conversely, smokeless powders were demonstrated not to share common odours. An evaluation of the effectiveness of commercially available pseudo aids reported limited success. The implications of the explosive odour studies upon canine training then led to the development of novel inert training aids based upon the active odours determined. ^
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubblelike deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the nonfundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.
Resumo:
It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.
Resumo:
Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.
Resumo:
Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs.^ In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug.^ Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). ^ The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.^
Resumo:
With the explosive growth of the volume and complexity of document data (e.g., news, blogs, web pages), it has become a necessity to semantically understand documents and deliver meaningful information to users. Areas dealing with these problems are crossing data mining, information retrieval, and machine learning. For example, document clustering and summarization are two fundamental techniques for understanding document data and have attracted much attention in recent years. Given a collection of documents, document clustering aims to partition them into different groups to provide efficient document browsing and navigation mechanisms. One unrevealed area in document clustering is that how to generate meaningful interpretation for the each document cluster resulted from the clustering process. Document summarization is another effective technique for document understanding, which generates a summary by selecting sentences that deliver the major or topic-relevant information in the original documents. How to improve the automatic summarization performance and apply it to newly emerging problems are two valuable research directions. To assist people to capture the semantics of documents effectively and efficiently, the dissertation focuses on developing effective data mining and machine learning algorithms and systems for (1) integrating document clustering and summarization to obtain meaningful document clusters with summarized interpretation, (2) improving document summarization performance and building document understanding systems to solve real-world applications, and (3) summarizing the differences and evolution of multiple document sources.
Resumo:
Detection canines represent the fastest and most versatile means of illicit material detection. This research endeavor in its most simplistic form is the improvement of detection canines through training, training aids, and calibration. This study focuses on developing a universal calibration compound for which all detection canines, regardless of detection substance, can be tested daily to ensure that they are working with acceptable parameters. Surrogate continuation aids (SCAs) were developed for peroxide based explosives along with the validation of the SCAs already developed within the International Forensic Research Institute (IFRI) prototype surrogate explosives kit. Storage parameters of the SCAs were evaluated to give recommendations to the detection canine community on the best possible training aid storage solution that minimizes the likelihood of contamination. Two commonly used and accepted detection canine imprinting methods were also evaluated for the speed in which the canine is trained and their reliability. As a result of the completion of this study, SCAs have been developed for explosive detection canine use covering: peroxide based explosives, TNT based explosives, nitroglycerin based explosives, tagged explosives, plasticized explosives, and smokeless powders. Through the use of these surrogate continuation aids a more uniform and reliable system of training can be implemented in the field than is currently used today. By examining the storage parameters of the SCAs, an ideal storage system has been developed using three levels of containment for the reduction of possible contamination. The developed calibration compound will ease the growing concerns over the legality and reliability of detection canine use by detailing the daily working parameters of the canine, allowing for Daubert rules of evidence admissibility to be applied. Through canine field testing, it has been shown that the IFRI SCAs outperform other commercially available training aids on the market. Additionally, of the imprinting methods tested, no difference was found in the speed in which the canines are trained or their reliability to detect illicit materials. Therefore, if the recommendations discovered in this study are followed, the detection canine community will greatly benefit through the use of scientifically validated training techniques and training aids.
Resumo:
This dissertation utilized electrospray ion mobility mass spectrometry (ESI-IMS-MS) to develop methods necessary for the separation of chiral compounds of forensic interest. The compounds separated included ephedrines and pseudoephedrines, that occur as impurities in confiscated amphetamine type substances (ATS) in an effort to determine the origin of these substances. The ESI-IMS-MS technique proved to be faster and more cost effective than traditional chromatographic methods currently used to conduct chiral separations such as gas and liquid chromatography. Both mass spectrometric and computational analysis revealed the separation mechanism of these chiral interactions allowing for further development to separate other chiral compounds by IMS. Successful separation of chiral compounds was achieved utilizing a variety of modifiers injected into the IMS drift tube. It was found that the modifiers themselves did not need to be chiral in nature and that achiral modifiers were sufficient in performing the required separations. The ESI-IMS-MS technique was also used to detect thermally labile compounds which are commonly found in explosive substances. The methods developed provided mass spectrometric identification of the type of ionic species being detected from explosive analytes as well as the appropriate solvent that enhances detection of these analytes in either the negative or positive ion mode. An application of the developed technique was applied to the analysis of a variety of low explosive smokeless powder samples. It was found that the developed ESI-IMS-MS technique not only detected the components of the smokeless powders, but also provided data that allowed the classification of the analyzed smokeless powders by manufacturer or make. ^
Resumo:
As a result of increased terrorist activity around the world, the development of a canine training aid suitable for daily military operations is necessary to provide effective canine explosive detection. Since the use of sniffer dogs has proven to be a reliable resource for the rapid detection of explosive volatiles organic compounds, the present study evaluated the ability of the Human Scent Collection System (HSCS) device for the creation of training aids for plasticized / tagged explosives, nitroglycerin and TNT containing explosives, and smokeless powders for canine training purposes. Through canine field testing, it was demonstrated that volatiles dynamically collected from real explosive material provided a positive canine response showing the effectiveness of the HSCS in creating canine training aids that can be used immediately or up to several weeks (3) after collection under proper storage conditions. These reliable non-hazardous training aids allow its use in areas where real explosive material aids are not practical and/or available.
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubble-like deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the non-fundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.