6 resultados para evolutionary relationships

em Digital Commons at Florida International University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The HIV virus is known for its ability to exploit numerous genetic and evolutionary mechanisms to ensure its proliferation, among them, high replication, mutation and recombination rates. Sliding MinPD, a recently introduced computational method [1], was used to investigate the patterns of evolution of serially-sampled HIV-1 sequence data from eight patients with a special focus on the emergence of X4 strains. Unlike other phylogenetic methods, Sliding MinPD combines distance-based inference with a nonparametric bootstrap procedure and automated recombination detection to reconstruct the evolutionary history of longitudinal sequence data. We present serial evolutionary networks as a longitudinal representation of the mutational pathways of a viral population in a within-host environment. The longitudinal representation of the evolutionary networks was complemented with charts of clinical markers to facilitate correlation analysis between pertinent clinical information and the evolutionary relationships. Results Analysis based on the predicted networks suggests the following:: significantly stronger recombination signals (p = 0.003) for the inferred ancestors of the X4 strains, recombination events between different lineages and recombination events between putative reservoir virus and those from a later population, an early star-like topology observed for four of the patients who died of AIDS. A significantly higher number of recombinants were predicted at sampling points that corresponded to peaks in the viral load levels (p = 0.0042). Conclusion Our results indicate that serial evolutionary networks of HIV sequences enable systematic statistical analysis of the implicit relations embedded in the topology of the structure and can greatly facilitate identification of patterns of evolution that can lead to specific hypotheses and new insights. The conclusions of applying our method to empirical HIV data support the conventional wisdom of the new generation HIV treatments, that in order to keep the virus in check, viral loads need to be suppressed to almost undetectable levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary goal of this dissertation is the study of patterns of viral evolution inferred from serially-sampled sequence data, i.e., sequence data obtained from strains isolated at consecutive time points from a single patient or host. RNA viral populations have an extremely high genetic variability, largely due to their astronomical population sizes within host systems, high replication rate, and short generation time. It is this aspect of their evolution that demands special attention and a different approach when studying the evolutionary relationships of serially-sampled sequence data. New methods that analyze serially-sampled data were developed shortly after a groundbreaking HIV-1 study of several patients from which viruses were isolated at recurring intervals over a period of 10 or more years. These methods assume a tree-like evolutionary model, while many RNA viruses have the capacity to exchange genetic material with one another using a process called recombination. ^ A genealogy involving recombination is best described by a network structure. A more general approach was implemented in a new computational tool, Sliding MinPD, one that is mindful of the sampling times of the input sequences and that reconstructs the viral evolutionary relationships in the form of a network structure with implicit representations of recombination events. The underlying network organization reveals unique patterns of viral evolution and could help explain the emergence of disease-associated mutants and drug-resistant strains, with implications for patient prognosis and treatment strategies. In order to comprehensively test the developed methods and to carry out comparison studies with other methods, synthetic data sets are critical. Therefore, appropriate sequence generators were also developed to simulate the evolution of serially-sampled recombinant viruses, new and more through evaluation criteria for recombination detection methods were established, and three major comparison studies were performed. The newly developed tools were also applied to "real" HIV-1 sequence data and it was shown that the results represented within an evolutionary network structure can be interpreted in biologically meaningful ways. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tree island ecosystems are important and distinct features of Florida Everglades wetlands. We described the inter-relationships among abiotic factors describing seasonally flooded tree islands and characterized plant–soil relationships in tree islands occurring in a relatively unimpacted area of the Everglades. We used Principal Components Analysis (PCA) to reduce our multi-factor dataset, quantified forest structure and vegetation nutrient dynamics, and related these vegetation parameters to PCA summary variables using linear regression analyses. We found that, of the 21 abiotic parameters used to characterize the ecosystem structure of seasonally flooded tree islands, 13 parameters were significantly correlated with four principal components, and they described 78% of the variance among the study islands. Most variation was described by factors related to soil oxidation and hydrology, exemplifying the sensitivity of tree island structure to hydrologic conditions. PCA summary variables describing tree island structure were related to variability in Chrysobalanus icaco (L.) canopy cover, Ilex cassine (L.) and Salix caroliniana (Michx.) canopy cover, Myrica cerifera (L.) plot frequency, litter turnover, % phosphorus resorption of co-dominant species, and nitrogen nutrient-use efficiency. This study supported findings that vegetation characteristics can be sensitive indicators of variability in tree island ecosystem structure. This study produced valuable, information which was used to recommend ecological targets (i.e. restoration performance measures) for seasonally flooded tree islands in more impacted regions of the Everglades landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a −1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history—phylogeny, divergence times, character evolution and diversification—of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. Results Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224–296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. Conclusions Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence time analysis provides key insights into the origins of major lineages and events and the timing of morphological (body form) and ecological (habitat) transitions. Living anomuran biodiversity is the product of 2 major changes in the tempo of diversification; our initial insights suggest that the acquisition of a crab-like form did not act as a key innovation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jacquemontia reclinata House (Convolvulaceae) is a federally-listed endangered species endemic to coastal strand habitat of southeastern Florida, from Palm Beach to Miami-Dade counties. Although J. reclinata is currently defined as a species, its taxonomic distinctness has never been analyzed using phylogenetic evidence. In order to assess the evolutionary distinctness of J. reclinata and identify its closest relatives, internal transcribed spacer (ITS) regions within nuclear ribosomal DNA were sequenced, and the sequence data was used to reconstruct a phylogeny of Jacquemontia. The study included the three putative relatives of J. reclinata and all other species within Jacquemontia known to occur in the Greater Antilles and Bahamas, except for three species. Results concur with previous morphological studies, which suggest that J. reclinata is closely related to J. cayensis Britton, J. curtisii Peter, and J. havanensis Urban. These three species and J. reclinata form an unresolved clade. Therefore, it is not certain which of these Caribbean species is sister to J. reclinata. The lack of resolution within the clade that includes J. reclinata implies that the taxa within the clade are evolutionarily similar. Future taxonomic studies of J. reclinata should focus in resolving relationships within the Jacquemontia reclinata clade.