43 resultados para estuaries

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altered freshwater inflows have affected circulation, salinity, and water quality patterns of Florida Bay, in turn altering the structure and function of this estuary. Changes in water quality and salinity and associated loss of dense turtle grass and other submerged aquatic vegetation (SAV) in Florida Bay have created a condition in the bay where sediments and nutrients have been regularly disturbed, frequently causing large and dense phytoplankton blooms. These algal and cyanobacterial blooms in turn often cause further loss of more recently established SAV, exacerbating the conditions causing the blooms. Chlorophyll a (CHLA) was selected as an indicator of water quality because it is an indicator of phytoplankton biomass, with concentrations reflecting the integrated effect of many of the water quality factors that may be altered by restoration activities. Overall, we assessed the CHLA indicator as being (1) relevant and reflecting the state of the Florida Bay ecosystem, (2) sensitive to ecosystem drivers (stressors, especially nutrient loading), (3) feasible to monitor, and (4) scientifically defensible. Distinct zones within the bay were defined according to statistical and consensual information. Threshold levels of CHLA for each zone were defined using historical data and scientific consensus. A presentation template of condition of the bay using these thresholds is shown as an example of an outreach product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multivariate statistical analysis was applied to a 10 year, multiparameter data set in an effort to describe the spatial dependence and inherent variation of water quality patterns in the mangrove estuaries of Ten Thousand Islands – Whitewater Bay area. Principal component analysis (PCA) of 16 water quality parameters collected monthly resulted in five groupings, which explained 72.5% of the variance of the original variables. The “Organic” component (PCI) was composed of alkaline phosphatase activity, total organic nitrogen, and total organic carbon; the “Dissolved Inorganic N” component (PCII) contained NO 3 − , NO 2 − , and NH 4 + ; the “Phytoplankton” component (PCIII) was made up of total phosphorus, chlorophyll a, and turbidity; dissolved oxygen and temperature were inversely related (PCIV); and salinity and soluble reactive phosphorus made up PCV. A cluster analysis of the mean and SD of PC scores resulted in the spatial aggregation of the 47 fixed stations into six classes having similar water quality, which we defined as: Mangrove Rivers, Whitewater Bay, Gulf Islands, Coot Bay, Blackwater River, and Inland Waterway. Marked differences in physical, chemical, and biological characteristics among classes were illustrated by this technique. Comparison of medians and variability of parameters among classes allowed large scale generalizations as to underlying differences in water quality in these regions. A strong south to north gradient in estuaries from high N - low P to low N - high P was ascribed to marked differences in landuse, freshwater input, geomorphology, and sedimentary geology along this tract. The ecological significance of this gradient discussed along with potential effects of future restoration plans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present 8 yr of long-term water quality, climatological, and water management data for 17 locations in Everglades National Park, Florida. Total phosphorus (P) concentration data from freshwater sites (typically ,0.25 mmol L21, or 8 mg L21) indicate the oligotrophic, P-limited nature of this large freshwater–estuarine landscape. Total P concentrations at estuarine sites near the Gulf of Mexico (average ø0.5 m mol L21) demonstrate the marine source for this limiting nutrient. This ‘‘upside down’’ phenomenon, with the limiting nutrient supplied by the ocean and not the land, is a defining characteristic of the Everglade landscape. We present a conceptual model of how the seasonality of precipitation and the management of canal water inputs control the marine P supply, and we hypothesize that seasonal variability in water residence time controls water quality through internal biogeochemical processing. Low freshwater inflows during the dry season increase estuarine residence times, enabling local processes to control nutrient availability and water quality. El Nin˜o–Southern Oscillation (ENSO) events tend to mute the seasonality of rainfall without altering total annual precipitation inputs. The Nin˜o3 ENSO index (which indicates an ENSO event when positive and a La Nin˜a event when negative) was positively correlated with both annual rainfall and the ratio of dry season to wet season precipitation. This ENSO-driven disruption in seasonal rainfall patterns affected salinity patterns and tended to reduce marine inputs of P to Everglades estuaries. ENSO events also decreased dry season residence times, reducing the importance of estuarine nutrient processing. The combination of variable water management activities and interannual differences in precipitation patterns has a strong influence on nutrient and salinity patterns in Everglades estuaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A brackish water ecotone of coastal bays and lakes, mangrove forests, salt marshes, tidal creeks, and upland hammocks separates Florida Bay, Biscayne Bay, and the Gulf of Mexico from the freshwater Everglades. The Everglades mangrove estuaries are characterized by salinity gradients that vary spatially with topography and vary seasonally and inter-annually with rainfall, tide, and freshwater flow from the Everglades. Because of their location at the lower end of the Everglades drainage basin, Everglades mangrove estuaries have been affected by upstream water management practices that have altered the freshwater heads and flows and that affect salinity gradients. Additionally, interannual variation in precipitation patterns, particularly those caused to El Nin˜o events, control freshwater inputs and salinity dynamics in these estuaries. Two major external drivers on this system are water management activities and global climate change. These drivers lead to two major ecosystem stressors: reduced freshwater flow volume and duration, and sea-level rise. Major ecological attributes include mangrove forest production, soil accretion, and resilience; coastal lake submerged aquatic vegetation; resident mangrove fish populations; wood stork (Mycteria americana) and roseate spoonbill (Platelea ajaja) nesting colonies; and estuarine crocodilian populations. Causal linkages between stressors and attributes include coastal transgression, hydroperiods, salinity gradients, and the ‘‘white zone’’ freshwater/estuarine interface. The functional estuary and its ecological attributes, as influenced by sea level and freshwater flow, must be viewed as spatially dynamic, with a possible near-term balancing of transgression but ultimately a long-term continuation of inland movement. Regardless of the spatio-temporal timing of this transgression, a salinity gradient supportive of ecologically functional Everglades mangrove estuaries will be required to maintain the integrity of the South Florida ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual mean salinity, light availability, and sediment depth to bedrock structured the submerged aquatic vegetation (SAV) communities in subtropical mangrove-lined estuaries. Three distinct SAV communities (i.e., Chara group, Halodule group, and Low SAV coverage group) were identified along the Everglades–Florida Bay ecotone and related to water quality using a discriminant function model that predicted the type of plant community at a given site from salinity, light availability, and sediment depth to bedrock. Mean salinity alone was able to correctly classify 78% of the sites and reliably separated the Chara group from the Halodule group. The addition of light availability and sediment depth to bedrock increased model accuracy to 90% and further distinguished the Chara group from the Halodule group. Light availability was uniquely valuable in separating the Chara group from the Low SAV coverage group. Regression analyses identified significant relationships between phosphorus concentration, phytoplankton abundance, and light availability and suggest that a decline in water transparency, associated with increasing salinity, may have also contributed to the historical decline of Chara communities in the region. This investigation applies relationships between environmental variables and SAV distribution and provides a case study into the application of these general principals to ecosystem management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the usefulness of fluorescence techniques for long-term monitoring and assessment of the dynamics (sources, transport and fate) of chromophoric dissolved organic matter (CDOM) in highly compartmentalized estuarine regions with non-point water sources. Water samples were collected monthly from a total of 73 sampling stations in the Florida Coastal Everglades (FCE) estuaries during 2001 and 2002. Spatial and seasonal variability of CDOM characteristics were investigated for geomorphologically distinct sub-regions within Florida Bay (FB), the Ten Thousand Islands (TTI), and Whitewater Bay (WWB). These variations were observed in both quantity and quality of CDOM. TOC concentrations in the FCE estuaries were generally higher during the wet season (June–October), reflecting high freshwater loadings from the Everglades in TTI, and a high primary productivity of marine biomass in FB. Fluorescence parameters suggested that the CDOM in FB is mainly of marine/microbial origin, while for TTI and WWB a terrestrial origin from Everglades marsh plants and mangroves was evident. Variations in CDOM quality seemed mainly controlled by tidal exchange/mixing of Everglades freshwater with Florida Shelf waters, tidally controlled releases of CDOM from fringe mangroves, primary productivity of marine vegetation in FB and diagenetic processes such as photodegradation (particularly for WWB). The source and dynamics of CDOM in these subtropical estuaries is complex and found to be influenced by many factors including hydrology, geomorphology, vegetation cover, landuse and biogeochemical processes. Simple, easy to measure, high sample throughput fluorescence parameters for surface waters can add valuable information on CDOM dynamics to long-term water quality studies which can not be obtained from quantitative determinations alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological monitoring is key to successful ecosystem restoration. Because all components within an ecosystem cannot be monitored, it is important to select indicators that are representative of the system, integrate system responses, clearly respond to system change, can be effectively and efficiently monitored, and are easily communicated. The roseate spoonbill is one ecological indicator species that meets these criteria within the Everglades ecosystem. Monitoring of roseate spoonbills in Florida Bay over the past 70 years has shown that aspects of this species’ reproduction respond to changes in hydrology and corresponding changes in prey abundance and availability. This indicator uses nesting location, nest numbers and nesting success in response to food abundance and availability. In turn, prey abundance is a function of hydrological conditions (especially water depth) and salinity. Metrics and targets for these performance measures were established based on previous findings. Values of each metric were translated into indices and identified as stoplight colors with green indicating that a given target has been met, yellow indicating that conditions are below the target, but within an acceptable range of it, and red indicating the measure is performing poorly in relation to the target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

South Florida has been subject to considerable changes during the last 100 years. This study provides a detailed survey of the presence, concentration levels, and spatial distribution of organic and inorganic contaminants in sediment samples collected within the coastal environments of southwest Florida. It evaluates the potential contributions and effects of the urban and agricultural development to the pollution loading of the estuarine sediments. And it also provides information regarding chronology of contamination at impacted sites. Copper was found to be the most critical contaminant among the trace metals. 12% of the samples exceeded the Threshold Effects Level (TEL). None of organic contaminants measured exceeded the Probable Effects Level (PEL) criteria. Total PAHs concentrations exceeded the TEL criteria in 6% of the samples. The evaluation for the chronology of contamination showed a significant increase with time of every contaminant analyzed. Fluorescence spectroscopy proves to be a good method for fast screening PAHs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds and represents the largest reservoirs of carbon (C) on earth. Particulate organic matter (POM) is another important carbon component in C cycling and controls a variety of biogeochemical processes. Estuaries, as important interfaces between land and ocean, play important roles in retaining and transforming such organic matter (OM) and serve as both sources and sinks of DOM and POM. There is a diverse array of both autochthonous and allochthonous OM sources in wetland/estuarine ecosystems. A comprehensive study on the sources, transformation and fate of OM in such ecosystems is essential in advancing our understanding of C cycling and better constraining the global C budget. In this work, DOM characteristics were investigated in different estuaries. Dissolved organic matter source strengths and dynamics were assessed in a seagrass-dominated subtropical estuarine lagoon. DOM dynamics controlled by hydrology and seagrass primary productivity were confirmed, and the primary source of DOM was quantified using the combination of excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC) and stable C isotope analysis. Seagrass can contribute up to 72% of the DOM in the study area. The spatial and temporal variation of DOM dynamics was also studied in a freshwated dominated estuary fringed with extensive salt marshes. The data showed that DOM was primarily derived from freshwater marshes and controlled by hydrology while salt marsh plants play a significant role in structuring the distribution patterns of DOM quality and quantity. The OM dynamics was also investigated in a mangrove-dominate estuary and a comparative study was conducted between the DOM and POM pools. The results revealed both similarity and dissimilarity in DOM and POM composition. The dynamics of both OM pools are largely uncoupled as a result of source differences. Fringe mangrove swamps are suggested to export similar amounts of DOM and POM and should be considered as an important source in coastal C budgets. Lastly, chemical characterizations were conducted on the featured fluorescence component in OM in an attempt to better understand the composition and origins of the specific PARAFAC component. The traditionally defined ‘protein-like’ fluorescence was found to contain both proteinaceous and phenolic compounds, suggesting that the application of this parameter as a proxy for amino acid content and bioavailability may be limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Everglades National Park (ENP) is about to undergo the world's largest wetland restoration with the aim of improving the quality, timing and distribution of water flow. The changes in water flow are hypothesized to alter the nutrient fluxes and organic matter (OM) dynamics within ENP, especially in the estuarine areas. This study used a multi-proxy approach of molecular markers and stable δ 13C isotope measurements, to determine the present day OM dynamics in ENP. ^ OM dynamics in wetland soils/sediments have proved to be difficult to understand using traditional geochemical approaches. These are often inadequate to describe the multitude of OM sources (e.g. higher land plant, emergent vegetation, submerged vegetation) to the soils/sediments and the complex diagenetic processes that can alter the OM characteristics. A multi-proxy approach, however, that incorporates both molecular level and bulk parameter information is ideal to comprehend complex OM dynamics in aquatic environments. Therefore, biomass-specific molecular markers or proxies can be useful in tracing the sources and processing of OM. This approach was used to examine the OM dynamics in the two major drainage basins, Shark River Slough and Taylor River Slough, of ENP. Freshwater to marine transects were sampled in both systems for soils/sediments and suspended particulate organic matter (SPOM) to be characterized through bulk OM analyses, lipid biomarker determinations (e.g. sterols, fatty acids, hydrocarbons and triterpenoids) and compound-specific stable carbon isotope (δ 13C) determinations. ^ One key accomplishment of the research was the assessment of a molecular marker proxy (Paq) to distinguish between emergent/higher plant vegetation from submerged vegetation within ENP. This proxy proved to be quite useful at tracing OM inputs to the soils/sediments of ENP. A second key accomplishment was the development of a 3-way model using vegetation specific molecular markers. This novel, descriptive model was successfully applied to the estuarine areas of Taylor and Shark River sloughs, providing clear evidence of mixing of freshwater, estuarine and marine derived OM in these areas. In addition, diagenetic transformations of OM in these estuaries were found to be quite different between Taylor and Shark Rivers, and are likely a result of OM quality and hydrological differences. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterotrophic bacteria are important decomposers and transformers of primary production and provide an important link between detritus and the aquatic food web. In seagrass ecosystems, much of seagrass primary production is unavailable through direct grazing and must undergo microbial reworking before seagrass production can enter the aquatic food web. The goal of my dissertation research is to understand better the role heterotrophic bacteria play in carbon cycling in seagrass estuaries. My dissertation research focuses on Florida Bay, a seagrass estuary that has experienced recent changes in carbon source availability, which may have altered ecosystem function. My dissertation research investigates the importance of seagrass, algal and/or cyanobacterial, and allochthonous-derived organic matter to heterotrophic bacteria in Florida Bay and helps establish the carbon base of the estuarine food web. ^ A three tiered approach to the study of heterotrophic bacterial carbon cycling and trophic influences in Florida Bay was used: (1) Spatiotemporal observations of environmental parameters (hydrology, nutrients, extracellular enzymes, and microbial abundance, biomass, and production); (2) Microbial grazing experiments under different levels of top-down and bottom-up influence; and (3) Bulk and compound-specific (bacteria-biomarker fatty acid analysis) stable carbon isotope analysis. ^ In Florida Bay, spatiotemporal patterns in microbial extracellular enzyme (also called ectoenzyme) activities indicate that microorganisms hydrolyzed selectively fractions of the estuarine organic matter pool. The microbial community hydrolyzed organic acids, peptides, and phosphate esters and did not use storage and structural carbohydrates. Organic matter use by heterotrophic bacterioplankton in Florida Bay was co-regulated by bottom-up (resource availability) and top-down (grazer mediated) processes. A bacterial carbon budget based on bacterial, epiphytic, and seagrass production indicates that heterotrophic bacterial carbon cycles are supported primarily through epiphytic production with mixing from seagrass production. Stable carbon isotope analysis of bacteria biomarkers and carbon sources in Florida Bay corroborate the results of the bacterial carbon budget. These results support previous studies of aquatic consumers in Florida Bay, indicating that epiphytic/benthic algal and/or cyanobacterial production with mixing from seagrass-derived organic matter is the carbon base of the seagrass estuarine food web. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial and temporal distribution of modern diatom assemblages in surface sediments, on the most dominant macrophytes, and in the water column at 96 locations in Florida Bay, Biscayne Bay and adjacent regions were examined in order to develop paleoenvironmental prediction models for this region. Analyses of these distributions revealed distinct temporal and spatial differences in assemblages among the locations. The differences among diatom assemblages living on subaquatic vegetation and sediments, and in the water column were significant. Because concentrations of salts, total phosphorus (WTP), total nitrogen (WTN) and total organic carbon (WTOC) are partly controlled by water management in this region, diatom-based models were produced to assess these variables. Discriminant function analyses showed that diatoms can also be successfully used to reconstruct changes in the abundance of diatom assemblages typical for different habitats and life habits. ^ To interpret paleoenvironmental changes, changes in salinity, WTN, WTP and WTOC were inferred from diatoms preserved in sediment cores collected along environmental gradients in Florida Bay (4 cores) and from nearshore and offshore locations in Biscayne Bay (3 cores). The reconstructions showed that water quality conditions in these estuaries have been fluctuating for thousands of years due to natural processes and sea-level changes, but almost synchronized shifts in diatom assemblages occurred in the mid-1960’s at all coring locations (except Ninemile Bank and Bob Allen Bank in Florida Bay). These alterations correspond to the major construction of numerous water management structures on the mainland. Additionally, all the coring sites (except Card Sound Bank, Biscayne Bay and Trout Cove, Florida Bay) showed decreasing salinity and fluctuations in nutrient levels in the last two decades that correspond to increased rainfall in the 1990’s and increased freshwater discharge to the bays, a result of increased freshwater deliveries to the Everglades by South Florida Water Management District in the 1980’s and 1990’s. Reconstructions of the abundance of diatom assemblages typical for different habitats and life habits revealed multiple sources of diatoms to the coring locations and that epiphytic assemblages in both bays increased in abundance since the early 1990’s. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The Comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fish were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegates and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated how changes in nutrient supply altered the composition of epiphytic and benthic microalgal communities in a Thalassia testudinum (turtle grass) bed in Florida Bay. We established study plots at four sites in the bay and added nitrogen (N) and phosphorus (P) to the sediments in a factorial design. After 18, 24, and 30 months of fertilization we measured the pigment concentrations in the epiphytic and benthic microalgal assemblages using high performance liquid chromatography. Overall, the epiphytic assemblage was P-limited in the eastern portion of the bay, but each phototrophic group displayed unique spatial and temporal responses to N and P addition. Epiphytic chlorophyll a, an indicator of total microalgal load, and epiphytic fucoxanthin, an indicator of diatoms, increased in response to P addition at one eastern bay site, decreased at another eastern bay site, and were not affected by P or N addition at two western bay sites. Epiphytic zeaxanthin, an indicator of the cyanobacteria/coralline red algae complex, and epiphytic chlorophyll b, an indicator of green algae, generally increased in response to P addition at both eastern bay sites but did not respond to P or N addition in the western bay. Benthic chlorophyll a, chlorophyll b, fucoxanthin, and zeaxanthin showed complex responses to N and P addition in the eastern bay, suggesting that the benthic assemblage is limited by both N and P. Benthic assemblages in the western bay were variable over time and displayed few responses to N or P addition. The contrasting nutrient limitation patterns between the epiphytic and benthic communities in the eastern bay suggest that altering nutrient input to the bay, as might occur during Everglades restoration, can shift microalgal community structure, which may subsequently alter food web support for upper trophic levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the spatial extent of nitrogen (N) and phosphorus (P) limitation of each of the major benthic primary producer groups in Florida Bay (seagrass, epiphytes, macroalgae, and benthic microalgae) and characterized the shifts in primary producer community composition following nutrient enrichment. We established 24 permanent 0.25-m2 study plots at each of six sites across Florida Bay and added N and P to the sediments in a factorial design for 18 mo. Tissue nutrient content of the turtlegrass Thalassia testudinum revealed a spatial pattern in P limitation, from severe limitation in the eastern bay (N:P > 96:1), moderate limitation in two intermediate sites (approximately 63:1), and balanced with N availability in the western bay (approximately 31:1). P addition increased T. testudinum cover by 50-75% and short-shoot productivity by up to 100%, but only at the severely P-limited sites. At sites with an ambient N:P ratio suggesting moderate P limitation, few seagrass responses to nutrients occurred. Where ambient T. testudinum tissue N:P ratios indicated N and P availability was balanced, seagrass was not affected by nutrient addition but was strongly influenced by disturbance (currents, erosion). Macroalgal and epiphytic and benthic microalgal biomass were variable between sites and treatments. In general, there was no algal overgrowth of the seagrass in enriched conditions, possibly due to the strength of seasonal influences on algal biomass or regulation by grazers. N addition had little effect on any benthic primary producers throughout the bay. The Florida Bay benthic primary producer community was P limited, but P-induced alterations of community structure were not uniform among primary producers or across Florida Bay and did not always agree with expected patterns of nutrient limitation based on stoichiometric predictions from field assays of T. testudinum tissue N:P ratios.