3 resultados para epoc® blood analysis system

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a system for visually analyzing the electromagnetic fields of the electrical machines in the energy conversion laboratory. The system basically utilizes the finite element method to achieve a real-time effect in the analysis of electrical machines during hands-on experimentation. The system developed is a tool to support the student's understanding of the electromagnetic field by calculating performance measures and operational concepts pertaining to the practical study of electrical machines. Energy conversion courses are fundamental in electrical engineering. The laboratory is conducted oriented to facilitate the practical application of the theory presented in class, enabling the student to use electromagnetic field solutions obtained numerically to calculate performance measures and operating characteristics. Laboratory experiments are utilized to help the students understand the electromagnetic concepts by the use of this visual and interactive analysis system. In this system, this understanding is accomplished while hands-on experimentation takes place in real-time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. ^ We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. ^ We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. ^ We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). ^ In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.