15 resultados para environmental modeling

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the relative fit of both Finn's (1989) Participation-Identification and Wehlage, Rutter, Smith, Lesko and Fernandez's (1989) School Membership models of high school completion to a sample of 4,597 eighth graders taken from the National Educational Longitudinal Study of 1988, (NELS:88), utilizing structural equation modeling techniques. This study found support for the importance of educational engagement as a factor in understanding academic achievement. The Participation-Identification model was particularly well fitting when applied to the sample of high school completers, dropouts (both overall and White dropouts) and African-American students. This study also confirmed the contribution of school environmental factors (i.e., size, diversity of economic and ethnic status among students) and family resources (i.e., availability of learning resources in the home and parent educational level) to students' educational engagement. Based on these findings, school social workers will need to be more attentive to utilizing macro-level interventions (i.e., community organization, interagency coordination) to achieve the organizational restructuring needed to address future challenges. The support found for the Participation-Identification model supports a shift in school social workers' attention from reactive attempts to improve the affective-interpersonal lives of students to proactive attention to their academic lives. The model concentrates school social work practices on the central mission of schools, which is educational engagement. School social workers guided by this model would be encouraged to seek changes in school policies and organization that would facilitate educational engagement. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research presented in this dissertation is comprised of several parts which jointly attain the goal of Semantic Distributed Database Management with Applications to Internet Dissemination of Environmental Data. ^ Part of the research into more effective and efficient data management has been pursued through enhancements to the Semantic Binary Object-Oriented database (Sem-ODB) such as more effective load balancing techniques for the database engine, and the use of Sem-ODB as a tool for integrating structured and unstructured heterogeneous data sources. Another part of the research in data management has pursued methods for optimizing queries in distributed databases through the intelligent use of network bandwidth; this has applications in networks that provide varying levels of Quality of Service or throughput. ^ The application of the Semantic Binary database model as a tool for relational database modeling has also been pursued. This has resulted in database applications that are used by researchers at the Everglades National Park to store environmental data and to remotely-sensed imagery. ^ The areas of research described above have contributed to the creation TerraFly, which provides for the dissemination of geospatial data via the Internet. TerraFly research presented herein ranges from the development of TerraFly's back-end database and interfaces, through the features that are presented to the public (such as the ability to provide autopilot scripts and on-demand data about a point), to applications of TerraFly in the areas of hazard mitigation, recreation, and aviation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first essay developed a respondent model of Bayesian updating for a double-bound dichotomous choice (DB-DC) contingent valuation methodology. I demonstrated by way of data simulations that current DB-DC identifications of true willingness-to-pay (WTP) may often fail given this respondent Bayesian updating context. Further simulations demonstrated that a simple extension of current DB-DC identifications derived explicitly from the Bayesian updating behavioral model can correct for much of the WTP bias. Additional results provided caution to viewing respondents as acting strategically toward the second bid. Finally, an empirical application confirmed the simulation outcomes. The second essay applied a hedonic property value model to a unique water quality (WQ) dataset for a year-round, urban, and coastal housing market in South Florida, and found evidence that various WQ measures affect waterfront housing prices in this setting. However, the results indicated that this relationship is not consistent across any of the six particular WQ variables used, and is furthermore dependent upon the specific descriptive statistic employed to represent the WQ measure in the empirical analysis. These results continue to underscore the need to better understand both the WQ measure and its statistical form homebuyers use in making their purchase decision. The third essay addressed a limitation to existing hurricane evacuation modeling aspects by developing a dynamic model of hurricane evacuation behavior. A household's evacuation decision was framed as an optimal stopping problem where every potential evacuation time period prior to the actual hurricane landfall, the household's optimal choice is to either evacuate, or to wait one more time period for a revised hurricane forecast. A hypothetical two-period model of evacuation and a realistic multi-period model of evacuation that incorporates actual forecast and evacuation cost data for my designated Gulf of Mexico region were developed for the dynamic analysis. Results from the multi-period model were calibrated with existing evacuation timing data from a number of hurricanes. Given the calibrated dynamic framework, a number of policy questions that plausibly affect the timing of household evacuations were analyzed, and a deeper understanding of existing empirical outcomes in regard to the timing of the evacuation decision was achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Groundwater systems of different densities are often mathematically modeled to understand and predict environmental behavior such as seawater intrusion or submarine groundwater discharge. Additional data collection may be justified if it will cost-effectively aid in reducing the uncertainty of a model's prediction. The collection of salinity, as well as, temperature data could aid in reducing predictive uncertainty in a variable-density model. However, before numerical models can be created, rigorous testing of the modeling code needs to be completed. This research documents the benchmark testing of a new modeling code, SEAWAT Version 4. The benchmark problems include various combinations of density-dependent flow resulting from variations in concentration and temperature. The verified code, SEAWAT, was then applied to two different hydrological analyses to explore the capacity of a variable-density model to guide data collection. ^ The first analysis tested a linear method to guide data collection by quantifying the contribution of different data types and locations toward reducing predictive uncertainty in a nonlinear variable-density flow and transport model. The relative contributions of temperature and concentration measurements, at different locations within a simulated carbonate platform, for predicting movement of the saltwater interface were assessed. Results from the method showed that concentration data had greater worth than temperature data in reducing predictive uncertainty in this case. Results also indicated that a linear method could be used to quantify data worth in a nonlinear model. ^ The second hydrological analysis utilized a model to identify the transient response of the salinity, temperature, age, and amount of submarine groundwater discharge to changes in tidal ocean stage, seasonal temperature variations, and different types of geology. The model was compared to multiple kinds of data to (1) calibrate and verify the model, and (2) explore the potential for the model to be used to guide the collection of data using techniques such as electromagnetic resistivity, thermal imagery, and seepage meters. Results indicated that the model can be used to give insight to submarine groundwater discharge and be used to guide data collection. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen atoms within fossil wood provide high-resolution records of climate change, particularly for the Quaternary. However, current analysis methods of fossil cellulose do not differentiate between different positions of the oxygen atoms. Here, we propose a refinement to tree-cellulose paleoclimatology modeling, using the cellulose-derived compound phenylglucosazone as the isotopic substrate. Stem samples from trees were collected at northern latitudes as low as 24°37′N and as high as 69°00′N. We extracted stem water and cellulose from each stem sample and analyzed them for their 18O content. In addition, we derived the cellulose to phenylglucosazone, a compound which lacks the oxygen attached to the second carbon of the cellulose–glucose moieties. Oxygen isotope analysis of phenylglucosazone allowed us to calculate the 18O content of the oxygen attached to the second carbon of the cellulose–glucose moieties. By way of these analyses, we tested two hypotheses: first, that the 18O content of the oxygen attached to second carbon will more closely reflect the 18O content of the stem water, and will not resemble the 18O content of either cellulose or its derivative phenylglucosazone. Second, tree-ring models that incorporate the variable oxygen isotope fractionation shown here and elsewhere are more accurate than those that do not. Our first hypothesis was rejected on the basis that the oxygen isotope ratios of the oxygen attached to the second carbon of the glucose moieties had a noisy isotopic signal with a large standard deviation and gave the poorest correlation with the oxygen isotope ratios of stem water. Related to this isotopic noise, we observed that the correlation between oxygen isotope ratios of phenylglucosazone with both stem water and relative humidity were higher than those observed for cellulose. Our hypothesis about tree-ring models which account for changes in the oxygen isotopic fractionation during cellulose synthesis was consistent only for the 18O content of phenylglucosazone. We showed that the tree-ring model based on the 18O content of phenylglucosazone was an improvement over existing models that are based on whole cellulose. Additionally, this approach may be used in other cellulose based archives such as peat deposits and lacustrine sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromium (Cr) is a metal of particular environmental concern, owing to its toxicity and widespread occurrence in groundwater, soil, and soil solution. A combination of hydrological, geochemical, and microbiological processes governs the subsurface migration of Cr. Little effort has been devoted to examining how these biogeochemical reactions combine with hydrologic processes influence Cr migration. This study has focused on the complex problem of predicting the Cr transport in laboratory column experiments. A 1-D reactive transport model was developed and evaluated against data obtained from laboratory column experiments. ^ A series of dynamic laboratory column experiments were conducted under abiotic and biotic conditions. Cr(III) was injected into columns packed with β-MnO 2-coated sand at different initial concentrations, variable flow rates, and at two different pore water pH (3.0 and 4.0). In biotic anaerobic column experiments Cr(VI) along with lactate was injected into columns packed with quartz sand or β-MnO2-coated sand and bacteria, Shewanella alga Simidu (BrY-MT). A mathematical model was developed which included advection-dispersion equations for the movement of Cr(III), Cr(VI), dissolved oxygen, lactate, and biomass. The model included first-order rate laws governing the adsorption of each Cr species and lactate. The equations for transport and adsorption were coupled with nonlinear equations for rate-limited oxidation-reduction reactions along with dual-monod kinetic equations. Kinetic batch experiments were conducted to determine the reduction of Cr(VI) by BrY-MT in three different substrates. Results of the column experiments with Cr(III)-containing influent solutions demonstrate that β-MnO2 effectively catalyzes the oxidation of Cr(III) to Cr(VI). For a given influent concentration and pore water velocity, oxidation rates are higher, and hence effluent concentrations of Cr(VI) are greater, at pH 4 relative to pH 3. Reduction of Cr(VI) by BrY-MT was rapid (within one hour) in columns packed with quartz sand, whereas Cr(VI) reduction by BrY-MT was delayed (57 hours) in presence of β-MnO 2-coated sand. BrY-MT grown in BHIB (brain heart infusion broth) reduced maximum amount of Cr(VI) to Cr(III) followed by TSB (tryptic soy broth) and M9 (minimum media). The comparisons of data and model results from the column experiments show that the depths associated with Cr(III) oxidation and transport within sediments of shallow aquatic systems can strongly influence trends in surface water quality. The results of this study suggests that carefully performed, laboratory column experiments is a useful tool in determining the biotransformation of redox-sensitive metals even in the presence of strong oxidant, like β-MnO2. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. ^ Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. ^ Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. ^ With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first essay developed a respondent model of Bayesian updating for a double-bound dichotomous choice (DB-DC) contingent valuation methodology. I demonstrated by way of data simulations that current DB-DC identifications of true willingness-to-pay (WTP) may often fail given this respondent Bayesian updating context. Further simulations demonstrated that a simple extension of current DB-DC identifications derived explicitly from the Bayesian updating behavioral model can correct for much of the WTP bias. Additional results provided caution to viewing respondents as acting strategically toward the second bid. Finally, an empirical application confirmed the simulation outcomes. The second essay applied a hedonic property value model to a unique water quality (WQ) dataset for a year-round, urban, and coastal housing market in South Florida, and found evidence that various WQ measures affect waterfront housing prices in this setting. However, the results indicated that this relationship is not consistent across any of the six particular WQ variables used, and is furthermore dependent upon the specific descriptive statistic employed to represent the WQ measure in the empirical analysis. These results continue to underscore the need to better understand both the WQ measure and its statistical form homebuyers use in making their purchase decision. The third essay addressed a limitation to existing hurricane evacuation modeling aspects by developing a dynamic model of hurricane evacuation behavior. A household’s evacuation decision was framed as an optimal stopping problem where every potential evacuation time period prior to the actual hurricane landfall, the household’s optimal choice is to either evacuate, or to wait one more time period for a revised hurricane forecast. A hypothetical two-period model of evacuation and a realistic multi-period model of evacuation that incorporates actual forecast and evacuation cost data for my designated Gulf of Mexico region were developed for the dynamic analysis. Results from the multi-period model were calibrated with existing evacuation timing data from a number of hurricanes. Given the calibrated dynamic framework, a number of policy questions that plausibly affect the timing of household evacuations were analyzed, and a deeper understanding of existing empirical outcomes in regard to the timing of the evacuation decision was achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive samplers are not only a versatile tool to integrate environmental concentrations of pollutants, but also to avoid the use of live sentinel organisms for environmental monitoring. This study introduced the use of magnetic silicone polymer composites (Fe-PDMS) as passive sampling media to pre-concentrate a wide range of analytes from environmental settings. The composite samplers were assessed for their accumulation properties by performing lab experiments with two model herbicides (Atrazine and Irgarol 1051) and evaluated for their uptake properties from environmental settings (waters and sediments). The Fe-PDMS composites showed good accumulation of herbicides and pesticides from both freshwater and saltwater settings and the accumulation mechanism was positively correlated with the log Kow value of individual analytes. Results from the studies show that these composites could be easily used for a wide number of applications such as monitoring, cleanup, and/or bioaccumulation modeling, and as a non-intrusive and nondestructive monitoring tool for environmental forensic purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool 5 (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the 10 upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results 15 show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and 20 water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing dependence on groundwater in the Wakal River basin, India, jeopardizes water supply sustainability. A numerical groundwater model was developed to better understand the aquifer system and to evaluate its potential in terms of quantity and replenishment. Potential artificial recharge areas were delineated using landscape and hydrogeologic parameters, Geographic Information System (GIS), and remote sensing. Groundwater models are powerful tools for recharge estimation when transmissivity is known. Proper recharge must be applied to reproduce field-measured heads. The model showed that groundwater levels could decline significantly if there are two drought years in every four years that result in reduced recharge, and groundwater withdrawal is increased by 15%. The effect of such drought is currently uncertain however, because runoff from the basin is unknown. Remote sensing and GIS revealed areas with slopes less than 5%, forest cover, and Normalized Difference Vegetative Index greater than 0.5 that are suitable recharge sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Chihuahua desert is one of the most biologically diverse ecosystems in the world, but suffers serious degradation because of changes in fire regimes resulting in large catastrophic fires. My study was conducted in the Sierra La Mojonera (SLM) natural protected area in Mexico. The purpose of this study was to implement the use of FARSITE fire modeling as a fire management tool to develop an integrated fire management plan at SLM. Firebreaks proved to detain 100% of wildfire outbreaks. The rosetophilous scrub experienced the fastest rate of fire spread and lowland creosote bush scrub experienced the slowest rate of fire spread. March experienced the fastest rate of fire spread, while September experienced the slowest rate of fire spread. The results of my study provide a tool for wildfire management through the use geospatial technologies and, in particular, FARSITE fire modeling in SLM and Mexico.