6 resultados para electrofishing

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The connectivity between the fish community of estuarine mangroves and that of freshwater habitats upstream remains poorly understood. In the Florida Everglades, mangrove-lined creeks link freshwater marshes to estuarine habitats downstream and may act as dry-season refuges for freshwater fishes. We examined seasonal dynamics in the fish community of ecotonal creeks in the southwestern region of Everglades National Park, specifically Rookery Branch and the North and watson rivers. Twelve low-order creeks were sampled via electrofishing, gill nets, and minnow traps during the wet season, transition period, and dry season in 2004-2005. Catches were greater in Rookery Branch than in the North and watson rivers, particularly during the transition period. Community composition varied seasonally in Rookery Branch, and to a greater extent for the larger species, reflecting a pulse of freshwater taxa into creeks as marshes upstream dried periodically. The pulse was short-lived, a later sample showed substantial decreases in freshwater fish numbers. No evidence of a similar influx was seen in the North and watson rivers, which drain shorter hydroperiod marshes and exhibit higher salinities. These results suggest that head-water creeks can serve as important dry-season refugia. Increased freshwater flow resulting from Everglades restoration may enhance this connectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the tropical and subtropical wet and dry regions, maintaining natural hydrologic connections between coastal rivers and adjacent ephemeral wetlands is critical to conserving and sustaining high levels of fisheries production within these systems. Though there is a consensus that there is a need to maintain these natural connections, little is known about what attributes of floodplain inundation regimes are most important in sustaining fisheries production. Two attributes of the flood season and thus floodplain inundation that may be particularly influential to fisheries are the amplitude of the flood season (floodplain water depth and spatial extent of inundation) and the duration of the flood season (i.e., time floodplains are inundated). In mangrove-dominated Everglades coastal rivers, seasonal inundation of upstream marsh floodplains may play an important role in provisioning recreational fisheries; however, this relationship remains unknown. Using two Everglades coastal river fisheries as a model, we tested whether the amplitude of the flood season or the duration of the flood season is more important in explaining variation in angler catch records of common snook and largemouth bass collected from 1992 to 2012. We validated angler catches with fisheries-independent electrofishing conducted in the same region from 2004 to 2012. Our results showed (1) that bass angler catches tracked electrofishing catches, while snook catches were completely mismatched. And (2) that previous year's marsh dynamics, particularly the duration of the flood season, was more influential than the flood season amplitude in explaining variation in bass catches, such that bass angler catches were negatively correlated to the period time that floodplains remained disconnected from coastal rivers in the previous year, while snook catches were not very well explained by floodplain inundation terms.