5 resultados para effective linear solver

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural and man-made disasters have gained attention at all levels of policy-making in recent years. Emergency management tasks are inherently complex and unpredictable, and often require coordination among multiple organizations across different levels and locations. Effectively managing various knowledge areas and the organizations involved has become a critical emergency management success factor. However, there is a general lack of understanding about how to describe and assess the complex nature of emergency management tasks and how knowledge integration can help managers improve emergency management task performance. ^ The purpose of this exploratory research was first, to understand how emergency management operations are impacted by tasks that are complex and inter-organizational and second, to investigate how knowledge integration as a particular knowledge management strategy can improve the efficiency and effectiveness of the emergency tasks. Three types of specific knowledge were considered: context-specific, technology-specific, and context-and-technology-specific. ^ The research setting was the Miami-Dade Emergency Operations Center (EOC) and the study was based on the survey responses from the participants in past EOC activations related to their emergency tasks and knowledge areas. The data included task attributes related to complexity, knowledge area, knowledge integration, specificity of knowledge, and task performance. The data was analyzed using multiple linear regressions and path analyses, to (1) examine the relationships between task complexity, knowledge integration, and performance, (2) the moderating effects of each type of specific knowledge on the relationship between task complexity and performance, and (3) the mediating role of knowledge integration. ^ As per theory-based propositions, the results indicated that overall component complexity and interactive complexity tend to have a negative effect on task performance. But surprisingly, procedural rigidity tended to have a positive effect on performance in emergency management tasks. Also as per our expectation, knowledge integration had a positive relationship with task performance. Interestingly, the moderating effects of each type of specific knowledge on the relationship between task complexity and performance were varied and the extent of mediation of knowledge integration depended on the dimension of task complexity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural and man-made disasters have gained attention at all levels of policy-making in recent years. Emergency management tasks are inherently complex and unpredictable, and often require coordination among multiple organizations across different levels and locations. Effectively managing various knowledge areas and the organizations involved has become a critical emergency management success factor. However, there is a general lack of understanding about how to describe and assess the complex nature of emergency management tasks and how knowledge integration can help managers improve emergency management task performance. The purpose of this exploratory research was first, to understand how emergency management operations are impacted by tasks that are complex and inter-organizational and second, to investigate how knowledge integration as a particular knowledge management strategy can improve the efficiency and effectiveness of the emergency tasks. Three types of specific knowledge were considered: context-specific, technology-specific, and context-and-technology-specific. The research setting was the Miami-Dade Emergency Operations Center (EOC) and the study was based on the survey responses from the participants in past EOC activations related to their emergency tasks and knowledge areas. The data included task attributes related to complexity, knowledge area, knowledge integration, specificity of knowledge, and task performance. The data was analyzed using multiple linear regressions and path analyses, to (1) examine the relationships between task complexity, knowledge integration, and performance, (2) the moderating effects of each type of specific knowledge on the relationship between task complexity and performance, and (3) the mediating role of knowledge integration. As per theory-based propositions, the results indicated that overall component complexity and interactive complexity tend to have a negative effect on task performance. But surprisingly, procedural rigidity tended to have a positive effect on performance in emergency management tasks. Also as per our expectation, knowledge integration had a positive relationship with task performance. Interestingly, the moderating effects of each type of specific knowledge on the relationship between task complexity and performance were varied and the extent of mediation of knowledge integration depended on the dimension of task complexity.