4 resultados para effective gain cross section
em Digital Commons at Florida International University
Resumo:
The main goal of this dissertation was to study two- and three-nucleon Short Range Correlations (SRCs) in high energy three-body breakup of 3He nucleus in 3He(e, e'NN) N reaction. SRCs are characterized by quantum fluctuations in nuclei during which constituent nucleons partially overlap with each other. ^ A theoretical framework is developed within the Generalized Eikonal Approximation (GEA) which upgrades existing medium-energy methods that are inapplicable for high momentum and energy transfer reactions. High momentum and energy transfer is required to provide sufficient resolution for probing SRCs. GEA is a covariant theory which is formulated through the effective Feynman diagrammatic rules. It allows self-consistent calculation of single and double re-scatterings amplitudes which are present in three-body breakup processes. The calculations were carried out in detail and the analytical result for the differential cross section of 3He(e, e'NN)N reaction was derived in a form applicable for programming and numerical calculations. The corresponding computer code has been developed and the results of computation were compared to the published experimental data, showing satisfactory agreement for a wide range of values of missing momenta. ^ In addition to the high energy approximation this study exploited the exclusive nature of the process under investigation to gain more information about the SRCs. The description of the exclusive 3He( e, e'NN)N reaction has been done using the formalism of the nuclear decay function, which is a practically unexplored quantity and is related to the conventional spectral function through the integration of the phase space of the recoil nucleons. Detailed investigation showed that the decay function clearly exhibits the main features of two- and three-nucleon correlations. Four highly practical types of SRCs in 3He nucleus were discussed in great detail for different orders of the final state re-interactions using the decay function as an unique identifying tool. ^ The overall conclusion in this dissertation suggests that the investigation of the decay function opens up a completely new venue in studies of short range nuclear properties. ^
Resumo:
The main goal of this dissertation was to study two- and three-nucleon Short Range Correlations (SRCs) in high energy three-body breakup of 3He nucleus in 3He(e, e'NN)N reaction. SRCs are characterized by quantum fluctuations in nuclei during which constituent nucleons partially overlap with each other. A theoretical framework is developed within the Generalized Eikonal Approximation (GEA) which upgrades existing medium-energy methods that are inapplicable for high momentum and energy transfer reactions. High momentum and energy transfer is required to provide sufficient resolution for probing SRCs. GEA is a covariant theory which is formulated through the effective Feynman diagrammatic rules. It allows self-consistent calculation of single and double re-scatterings amplitudes which are present in three-body breakup processes. The calculations were carried out in detail and the analytical result for the differential cross section of 3He(e, e'NN)Nreaction was derived in a form applicable for programming and numerical calculations. The corresponding computer code has been developed and the results of computation were compared to the published experimental data, showing satisfactory agreement for a wide range of values of missing momenta. In addition to the high energy approximation this study exploited the exclusive nature of the process under investigation to gain more information about the SRCs. The description of the exclusive 3He(e, e'NN)N reaction has been done using the formalism of the nuclear decay function, which is a practically unexplored quantity and is related to the conventional spectral function through the integration of the phase space of the recoil nucleons. Detailed investigation showed that the decay function clearly exhibits the main features of two- and three-nucleon correlations. Four highly practical types of SRCs in 3He nucleus were discussed in great detail for different orders of the final state re-interactions using the decay function as an unique identifying tool. The overall conclusion in this dissertation suggests that the investigation of the decay function opens up a completely new venue in studies of short range nuclear properties.
Resumo:
The kaon electroproduction reaction H(e, e ′K+)Λ was studied as a function of the four momentum transfer, Q2, for different values of the virtual photon polarization parameter. Electrons and kaons were detected in coincidence in two High Resolution Spectrometers (HRS) at Jefferson Lab. Data were taken at electron beam energies ranging from 3.4006 to 5.7544 GeV. The kaons were identified using combined time of flight information and two Aerogel Čerenkov detectors used for particle identification. For different values of Q2 ranging from 1.90 to 2.35 GeV/c2 the center of mass cross sections for the Λ hyperon were determined for 20 kinematics and the longitudinal, σ L, and transverse, σT, terms were separated using the Rosenbluth separation technique. ^ Comparisons between available models and data have been studied. The comparison supports the t-channel dominance behavior for kaon electroproduction. All models seem to underpredict the transverse cross section. An estimate of the kaon form factor has been explored by determining the sensitivity of the separated cross sections to variations of the kaon EM form factor. From comparison between models and data we can conclude that interpreting the data using the Regge model is quite sensitive to a particular choice for the EM form factors. The data from the E98-108 experiment extends the range of the available kaon electroproduction cross section data to an unexplored region of Q2 where no separations have ever been performed. ^
Resumo:
Catastrophic failure from intentional terrorist attacks on surface transportation infrastructure could he detrimental to the society. In order to minimize the vulnerabilities and to ensure a safe transportation system, the issue of security for transportation structures, primarily bridges, which are subjected to man-made hazards is investigated in this study. A procedure for identifying and prioritizing "critical bridges" using a screening and prioritization processes is established. For each of the "critical" bridges, a systematic risk-based assessment approach is proposed that takes into account the combination of threat occurrence likelihood, its consequences, and the socioeconomic importance of the bridge. A series of effective security countermeasures are compiled in the four categories of deterrence, detection, defense and mitigation to help reduce the vulnerability of critical bridges. The concepts of simplified equivalent I-shape cross section and virtual materials are proposed for integration into a nonlinear finite element model, which helps assess the performance of reinforced concrete structures with and without composite retrofit or hardening measures under blast loading. A series of parametric studies are conducted for single column and two-column pier frame systems as well as for an entire bridge. The parameters considered include column height, column type, concrete strength, longitudinal steel reinforcement ratio, thickness, fiber angle and tensile strength of the fiber reinforced polymer (FRP) tube, shape of the cross section, damping ratio and different bomb sizes. The study shows the benefits of hardening with composites against blast loading. The effect of steel reinforcement on blast resistance of the structure is more significant than the effect of concrete compressive strength. Moreover, multiple blasts do not necessarily lead to a more severe destruction than a single detonation at a strategically vulnerable location on the bridges.