5 resultados para dynamic impulse response

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple physiological systems regulate the electric communication signal of the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Fish were injected with neuroendocrine probes which identified pharmacologically relevant serotonin (5-HT) receptors similar to the mammalian 5-HT1AR and 5-HT2AR. Peptide hormones of the hypothalamic-pituitary-adrenal/interrenal axis also augment the electric waveform. These results indicate that the central serotonergic system interacts with the hypothalamic-pituitary-interrenal system to regulate communication signals in this species. The same neuroendocrine probes were tested in females before and after introducing androgens to examine the relationship between sex steroid hormones, the serotonergic system, melanocortin peptides, and EOD modulations. Androgens caused an increase in female B. pinnicaudatus responsiveness to other pharmacological challenges, particularly to the melanocortin peptide adrenocorticotropic hormone (ACTH). A forced social challenge paradigm was administered to determine if androgens are responsible for controlling the signal modulations these fish exhibit when they encounter conspecifics. Males and females responded similarly to this social challenge construct, however introducing androgens caused implanted females to produce more exaggerated responses. These results confirm that androgens enhance an individual's capacity to produce an exaggerated response to challenge, however another unidentified factor appears to regulate sex-specific behaviors in this species. These results suggest that the rapid electric waveform modulations B. pinnicaudatus produces in response to conspecifics are situation-specific and controlled by activation of different serotonin receptor types and the subsequent effect on release of pituitary hormones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communication signals are shaped by the opposing selection pressures imposed by predators and mates. A dynamic signal might serve as an adaptive compromise between an inconspicuous signal that evades predators and an extravagant signal preferred by females. Such a signal has been described in the gymnotiform electric fish, Brachyhypopomus gauderio, which produces a sexually dimorphic electric organ discharge (EOD). The EOD varies on a circadian rhythm and in response to social cues. This signal plasticity is mediated by the slow action of androgens and rapid action of melanocortins. My dissertation research tested the hypotheses that (1) signal plasticity is related to sociality levels in gymnotiform species, and (2) differences in signal plasticity are regulated by differential sensitivity to androgen and melanocortin hormones. To assess the breadth of dynamic signaling within the order Gymnotiformes, I sampled 13 species from the five gymnotiform families. I recorded EODs to observe spontaneous signal oscillations after which I injected melanocortin hormones, saline control, or presented the fish with a conspecific. I showed that through the co-option of the ancient melanocortin pathway, gymnotiforms dynamically regulate EOD amplitude, spectral frequency, both, or neither. To investigate whether observed EOD plasticities are related to species-specific sociality I tested four species; two territorial, highly aggressive species, Gymnotus carapo and Apteronotus leptorhynchus, a highly gregarious species, Eigenmannia cf. virescens , and an intermediate short-lived species with a fluid social system, Brachyhypopomus gauderio. I examined the relationship between the androgens testosterone and 11-ketotestosterone, the melanocortin α-MSH, and their roles in regulating EOD waveform. I implanted all fish with androgen and blank silicone implants, and injected with α-MSH before and at the peak of implant effect. I found that waveforms of the most territorial and aggressive species were insensitive to hormone treatments; maintaining a static, stereotyped signal that preserves encoding of individual identity. Species with a fluid social system were most responsive to hormone treatments, exhibiting signals that reflect immediate condition and reproductive state. In conclusion, variation in gymnotiform signal plasticity is hormonally regulated and seems to reflect species-specific sociality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Globally, small-scale fisheries (SSFs) are driven by climate, governance, and market factors of social-ecological change, presenting both challenges and opportunities. The ability of small-scale fishermen and buyers to adapt to changing conditions allows participants to survive economic or environmental disturbances and to benefit from optimal conditions. This study presented here identifies key large-scale factors that drive SSFs in California to shift focus among targets and that dictate long-term trends in landings. We use Elinor Ostrom’s Social-Ecological System (SES) framework to apply an interdisciplinary approach when identifying potential factors and when understanding the complex dynamics of these fisheries. We analyzed the interactions among Monterey Bay SSFs over the past four decades since the passage of the Magnuson Stevens Fisheries Conservation and Management Act of 1976. In this region, the Pacific sardine (Sardinops sagax), northern anchovy (Engraulis mordax), and market squid (Loligo opalescens) fisheries comprise a tightly linked system where shifting focus among fisheries is a key element to adaptive capacity and reduced social and ecological vulnerability. Using a cluster analysis of landings, we identified four modes from 1974 to 2012 that were dominated by squid, sardine, anchovy, or lacked any dominance, enabling us to identify external drivers attributed to a change in fishery dominance during seven distinct transition points. Overall, we show that market and climate factors drive the transitions among dominance modes. Governance phases most dictated long-term trends in landings and are best viewed as a response to changes in perceived biomass and thus a proxy for biomass. Our findings suggest that globally, small-scale fishery managers should consider enabling shifts in effort among fisheries and retaining existing flexibility, as adaptive capacity is a critical determinant for social and ecological resilience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increase in the demand for the freight shipping in the United States has been predicted for the near future and Longer Combination Vehicles (LCVs), which can carry more loads in each trip, seem like a good solution for the problem. Currently, utilizing LCVs is not permitted in most states of the US and little research has been conducted on the effects of these heavy vehicles on the roads and bridges. In this research, efforts are made to study these effects by comparing the dynamic and fatigue effects of LCVs with more common trucks. Ten Steel and prestressed concrete bridges with span lengths ranging from 30’ to 140’ are designed and modeled using the grid system in MATLAB. Additionally, three more real bridges including two single span simply supported steel bridges and a three span continuous steel bridge are modeled using the same MATLAB code. The equations of motion of three LCVs as well as eight other trucks are derived and these vehicles are subjected to different road surface conditions and bumps on the roads and the designed and real bridges. By forming the bridge equations of motion using the mass, stiffness and damping matrices and considering the interaction between the truck and the bridge, the differential equations are solved using the ODE solver in MATLAB and the results of the forces in tires as well as the deflections and moments in the bridge members are obtained. The results of this study show that for most of the bridges, LCVs result in the smallest values of Dynamic Amplification Factor (DAF) whereas the Single Unit Trucks cause the highest values of DAF when traveling on the bridges. Also in most cases, the values of DAF are observed to be smaller than the 33% threshold suggested by the design code. Additionally, fatigue analysis of the bridges in this study confirms that by replacing the current truck traffic with higher capacity LCVs, in most cases, the remaining fatigue life of the bridge is only slightly decreased which means that taking advantage of these larger vehicles can be a viable option for decision makers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple physiological systems regulate the electric communication signal of the weakly electric gymnotiform fish, Brachyhypopomuspinnicaudatus. Fish were injected with neuroendocrine probes which identified pharmacologically relevant serotonin (5-HT) receptors similar to the mammalian 5-HT1AR and 5-HT2AR. Peptide hormones of the hypothalamic-pituitary-adrenal/interrenal axis also augment the electric waveform. These results indicate that the central serotonergic system interacts with the hypothalamic-pituitaryinterrenal system to regulate communication signals in this species. The same neuroendocrine probes were tested in females before and after introducing androgens to examine the relationship between sex steroid hormones, the serotonergic system, melanocortin peptides, and EOD modulations. Androgens caused an increase in female B. pinnicaudatus responsiveness to other pharmacological challenges, particularly to the melanocortin peptide adrenocorticotropic hormone (ACTH). A forced social challenge paradigm was administered to determine if androgens are responsible for controlling the signal modulations these fish exhibit when they encounter conspecifics. Males and females responded similarly to this social challenge construct, however introducing androgens caused implanted females to produce more exaggerated responses. These results confirm that androgens enhance an individual's capacity to produce an exaggerated response to challenge, however another unidentified factor appears to regulate sex-specific behaviors in this species. These results suggest that the rapid electric waveform modulations B. pinnicaudatus produces in response to conspecifics are situation-specific and controlled by activation of different serotonin receptor types and the subsequent effect on release of pituitary hormones.