7 resultados para dry material
em Digital Commons at Florida International University
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This study shows that light exposure of flocculent material (floc) from the Florida Coastal Everglades (FCE) results in significant dissolved organic matter (DOM) generation through photo-dissolution processes. Floc was collected at two sites along the Shark River Slough (SRS) and irradiated with artificial sunlight. The DOM generated was characterized using elemental analysis and excitation emission matrix fluorescence coupled with parallel factor analysis. To investigate the seasonal variations of DOM photo-generation from floc, this experiment was performed in typical dry (April) and wet (October) seasons for the FCE. Our results show that the dissolved organic carbon (DOC) for samples incubated under dark conditions displayed a relatively small increase, suggesting that microbial processes and/or leaching might be minor processes in comparison to photo-dissolution for the generation of DOM from floc. On the other hand, DOC increased substantially (as much as 259 mgC gC−1) for samples exposed to artificial sunlight, indicating the release of DOM through photo-induced alterations of floc. The fluorescence intensity of both humic-like and protein-like components also increased with light exposure. Terrestrial humic-like components were found to be the main contributors (up to 70%) to the chromophoric DOM (CDOM) pool, while protein-like components comprised a relatively small percentage (up to 16%) of the total CDOM. Simultaneously to the generation of DOC, both total dissolved nitrogen and soluble reactive phosphorus also increased substantially during the photo-incubation period. Thus, the photo-dissolution of floc can be an important source of DOM to the FCE environment, with the potential to influence nutrient dynamics in this system.
Resumo:
Flocculent material (floc) is an important energy source in wetlands. In the Florida Everglades, floc is present in both freshwater marshes and coastal environments and plays a key role in food webs and nutrient cycling. However, not much is known about its environmental dynamics, in particular its biological sources and bio-reactivity. We analysed floc samples collected from different environments in the Florida Everglades and applied biomarkers and pigment chemotaxonomy to identify spatial and seasonal differences in organic matter sources. An attempt was made to link floc composition with algal and plant productivity. Spatial differences were observed between freshwater marsh and estuarine floc. Freshwater floc receives organic matter inputs from local periphyton mats, as indicated by microbial biomarkers and chlorophyll-a estimates. At the estuarine sites, the floc is dominated by mangrove as well as diatom inputs from the marine end-member. The hydroperiod (duration and depth of inundation) at the freshwater sites influences floc organic matter preservation, where the floc at the short-hydroperiod site is more oxidised likely due to periodic dry-down conditions. Seasonal differences in floc composition were not consistent and the few that were observed are likely linked to the primary productivity of the dominant biomass (periphyton in the freshwater marshes and mangroves in the estuarine zone). Molecular evidence for hydrological transport of floc material from the freshwater marshes to the coastal fringe was also observed. With the on-going restoration of the Florida Everglades, it is important to gain a better understanding of the biogeochemical dynamics of floc, including its sources, transformations and reactivity.
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1267/thumbnail.jpg
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1268/thumbnail.jpg
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1270/thumbnail.jpg