17 resultados para drink drivers
em Digital Commons at Florida International University
Resumo:
The idea of comparative performance assessment is crucial. Recent study findings show that in South Florida the use by most municipalities of external benchmarks for performance comparison is virtually non-existent. On one level this study sought to identify the factors impacting resident perceptions of municipal service quality. On a different and more practical level, this study sought to identify a core set of measures that could serve for multi jurisdictional comparisons of performance. ^ This study empirically tested three groups of hypotheses. Data were collected via custom designed survey instruments from multiple jurisdictions, representing diverse socioeconomic backgrounds, and across two counties. A second layer of analysis was conducted on municipal budget documents for the presence of performance measures. A third layer of analysis was conducted via face-to-face interviews with residents at the point of service delivery. Research questions were analyzed using descriptive and inferential statistic methodologies. ^ Results of survey data yielded inconsistent findings. In absolute aggregated terms, the use of sociological determinants to guide inquiry failed to yield conclusive answers regarding the factors impacting resident perceptions of municipal service quality. At disaggregated community levels, however, definite differences emerged but these had weak predictive ability. More useful were the findings of performance measures reporting via municipal budget documents and analyses of interviews with residents at the point of service delivery. Regardless of socio-economic profile, neighborhood characteristics, level of civic engagement or type of community, the same aspects were important to citizens when making assessments of service quality. For parks and recreation, respondents most frequently cited maintenance, facility amenities, and program offerings as important while for garbage collection services timely and consistent service delivery mattered most. Surprisingly municipalities participating in the study track performance data on items indicated as important by citizen assessments but regular feed back from residents or reporting to the same is rarely done. ^ The implications of these findings suggest that endeavors, such as the one undertaken in this study, can assist in determining a core set of measures for cross jurisdictional comparisons of municipal service quality, improving municipal delivery of services, and to communicate with the public. ^
Resumo:
Coral reefs are experiencing declines worldwide and recently coral diseases have been identified as significant contributors to coral mortality. However, little is known regarding the factors that drive coral disease distributions and dynamics. Current knowledge of the organisms that cause coral diseases is also limited, with pathogens having been identified for only 5 of the 21 described coral diseases. The study presented here describes coral disease dynamics in terms of occurrence, prevalence, spatial distribution, and host species susceptibility from 2002--2004 on reefs of the Northern Florida Keys (NFK) and Lee Stocking Island (LSI) in the Bahamas' Exuma chain. In addition, this research investigated the influence of temperature, sediment, and nutrient availability on coral disease prevalence and severity. Finally, microbial communities associated with a polymicrobial disease, black band, were examined to address spatial and temporal variability. ^ Four scleractinian diseases were observed in repeated surveys conducted during June-August of each year: black band disease (BBD), white plague type 2 (WP), dark spots syndrome (DSS), and yellow band disease-(YBD). Coral disease prevalence was generally low in both the NFK and LSI as compared to epizootic levels reported previously in the NFK and other regions of the Caribbean. Disease prevalence and species susceptibility varied spatially and temporally. Massive framework species, including Siderastrea siderea, Colpophyllia natans, and Montastraea annularis, along with relatively smaller colonies of Meandrina meandrites and Dichocoenia stokesi, were most susceptible to disease. Temperature, sedimentation, and dissolved inorganic nitrogen were positively correlated with BBD infections. Furthermore, experimental nutrient enrichment exacerbated coral tissue loss to BBD both in situ and in vivo. Profiling of BBD microbial communities using length heterogeneity PCR revealed variation over space and time, with significantly distinct bacterial assemblages in the NFK, LSI, and US Virgin Islands. ^ This study contributes to knowledge of the relationship between coral diseases and the environment, and facilitates predictions regarding potential changes in coral reef communities under differing environmental conditions. Additionally, this research provides further understanding of coral disease dynamics at both the host and microbial pathogen levels.^
Resumo:
Aboveground net primary production (ANPP) by the dominant macrophyte and plant community composition are related to the changing hydrologic environment and to salinity in the southern Everglades, FL, USA. We present a new non-destructive ANPP technique that is applicable to any continuously growing herbaceous system. Data from 16 sites, collected from 1998 to 2004, were used to investigate how hydrology and salinity controlled sawgrass (Cladium jamaicense Crantz.) ANPP. Sawgrass live biomass showed little seasonal variation and annual means ranged from 89 to 639 gdw m)2. Mortality rates were 20–35% of live biomass per 2 month sampling interval, for biomass turnover rates of 1.3–2.5 per year. Production by C. jamaicense was manifest primarily as biomass turnover, not as biomass accumulation. Rates typically ranged from 300 to 750 gdw m)2 year)1, but exceeded 1000 gdw m)2 year)1 at one site and were as high as 750 gdw m)2 year)1 at estuarine ecotone sites. Production was negatively related to mean annual water depth, hydroperiod, and to a variable combining the two (depth-days). As water depths and hydroperiods increased in our southern Everglades study area, sawgrass ANPP declined. Because a primary restoration goal is to increase water depths and hydroperiods for some regions of the Everglades, we investigated how the plant community responded to this decline in sawgrass ANPP. Spikerush (Eleocharis sp.) was the next most prominent component of this community at our sites, and 39% of the variability in sawgrass ANPP was explained by a negative relationship with mean annual water depth, hydroperiod, and Eleocharis sp. density the following year. Sawgrass ANPP at estuarine ecotone sites responded negatively to salinity, and rates of production were slow to recover after high salinity years. Our results suggest that ecologists, managers, and the public should not necessarily interpret a decline in sawgrass that may result from hydrologic restoration as a negative phenomenon.
Resumo:
Everglades periphyton mats are tightly-coupled autotrophic (algae and cyanobacteria) and heterotrophic (eubacteria, fungi and microinvertebrates) microbial assemblages. We investigated the effect of water column total phosphorus and nitrogen concentrations, water depth and hydroperiod on periphyton of net production, respiration, nutrient content, and biomass. Our study sites were located along four transects that extended southward with freshwater sheetflow through sawgrass-dominated marsh. The water source for two of the transects were canal-driven and anchored at canal inputs. The two other transects were rain-driven (ombrotrophic) and began in sawgrass-dominated marsh. Periphyton dynamics were examined for upstream and downstream effects within and across the four transects. Although all study sites were characterized as short hydroperiod and phosphorus-limited oligotrophic, they represent gradients of hydrologic regime, water source and water quality of the southern Everglades. Average periphyton net production of 1.08 mg C AFDW−1 h−1 and periphyton whole system respiration of 0.38 mg C AFDW−1 h−1 rates were net autotrophic. Biomass was generally highest at ombrotrophic sites and sites downstream of canal inputs. Mean biomass over all our study sites was high, 1517.30 g AFDW m−2. Periphyton was phosphorus-limited. Average periphyton total phosphorus content was 137.15 μg P g−1 and average periphyton total N:P ratio was 192:1. Periphyton N:P was a sensitive indicator of water source. Even at extremely low mean water total phosphorus concentrations ( ≤ 0.21 μmol l−1), we found canal source effects on periphyton dynamics at sites adjacent to canal inputs, but not downstream of inflows. These canal source effects were most pronounced at the onset of wet season with initial rewetting. Spatial and temporal variability in periphyton dynamics could not solely be ascribed to water quality, but was often associated with both hydrology and water source.
Resumo:
More than half of the original Everglades extent formed a patterned peat mosaic of elevated ridges, lower and more open sloughs, and tree islands aligned parallel to the dominant flow direction. This ecologically important landscape structure remained in a dynamic equilibrium for millennia prior to rapid degradation over the past century in response to human manipulation of the hydrologic system. Restoration of the patterned landscape structure is one of the primary objectives of the Everglades restoration effort. Recent research has revealed that three main drivers regulated feedbacks that initiated and maintained landscape structure: the spatial and temporal distribution of surface water depths, surface and subsurface flow, and phosphorus supply. Causes of recent degradation include but are not limited to perturbations to these historically important controls; shifts in mineral and sulfate supply may have also contributed to degradation. Restoring predrainage hydrologic conditions will likely preserve remaining landscape pattern structure, provided a sufficient supply of surface water with low nutrient and low total dissolved solids content exists to maintain a rainfall-driven water chemistry. However, because of hysteresis in landscape evolution trajectories, restoration of areas with a fully degraded landscape could require additional human intervention.
Resumo:
The environmental dynamics of dissolved organic matter (DOM) were characterized for a shallow, subtropical, seagrass-dominated estuarine bay, namely Florida Bay, USA. Large spatial and seasonal variations in DOM quantity and quality were assessed using dissolved organic C (DOC) measurements and spectrophotometric properties including excitation emission matrix (EEM) fluorescence with parallel factor analysis (PARAFAC). Surface water samples were collected monthly for 2 years across the bay. DOM characteristics were statistically different across the bay, and the bay was spatially characterized into four basins based on chemical characteristics of DOM as determined by EEM-PARAFAC. Differences between zones were explained based on hydrology, geomorphology, and primary productivity of the local seagrass community. In addition, potential disturbance effects from a very active hurricane season were identified. Although the overall seasonal patterns of DOM variations were not significantly affected on a bay-wide scale by this disturbance, enhanced freshwater delivery and associated P and DOM inputs (both quantity and quality) were suggested as potential drivers for the appearance of algal blooms in high impact areas. The application of EEM-PARAFAC proved to be ideally suited for studies requiring high sample throughput methods to assess spatial and temporal ecological drivers and to determine disturbance-induced impacts in aquatic ecosystems.
Resumo:
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.
Resumo:
The influence of hydrological dynamics on vegetation distribution and the structuring of wetland environments is of growing interest as wetlands are modified by human action and the increasing threat from climate change. Hydrological properties have long been considered a driving force in structuring wetland communities. We link hydrological dynamics with vegetation distribution across Everglades National Park (ENP) using two publicly available datasets to study the probability structure of the frequency, duration, and depth of inundation events along with their relationship to vegetation distribution. This study is among the first to show hydrologic structuring of vegetation communities at wide spatial and temporal scales, as results indicate that the percentage of time a location is inundated and its mean depth are the principal structuring variables to which individual communities respond. For example, sawgrass, the most abundant vegetation type within the ENP, is found across a wide range of time inundated percentages and mean depths. Meanwhile, other communities like pine savanna or red mangrove scrub are more restricted in their distribution and found disproportionately at particular depths and inundations. These results, along with the probabilistic structure of hydropatterns, potentially allow for the evaluation of climate change impacts on wetland vegetation community structure and distribution.
Resumo:
Traditional methods of financing infrastructure, which include gas taxation, tax-exempt bonds, and reserve funds, have not been able to meet the growing demand for infrastructure. Innovative financing systems have emerged to close the gap that exists between the available and needed financing sources. The objective of the study presented in this paper is to assess determinants of innovative financing in the U.S. transportation infrastructure using a systemic approach. Innovation System of Systems approach is adopted for systemic assessment and a case-based research approach is utilized to explore the constituents of innovative financing for U.S. transportation infrastructure. The findings, which include constructs regarding the players, practices, and activities are used to create a model to enable understanding the dynamics of the drivers and inhibitors of innovation and, thus, to derive implications for practice. The model along with the constructs provides an analytical tool for practitioners in the U.S. transportation infrastructure.
Resumo:
In their efforts to provide an atmosphere or hospitality to their casino customers, many operators will provide complimentary alcoholic beverage service. This practice is fraught with liability, particularly in venues outside of Nevada. Conscientious operators must take every precaution to mitigate the possibility of lawsuit.
Resumo:
The purpose of this study was to examine the relationship between the structure of jobs and burnout, and to assess to what extent, if any this relationship was moderated by individual coping methods. This study was supported by the Karasek's (1998) Job Demand-Control-Support theory of work stress as well as Maslach and Leiter's (1993) theory of burnout. Coping was examined as a moderator based on the conceptualization of Lazarus and Folkman (1984). ^ Two overall overarching questions framed this study: (a) what is the relationship between job structure, as operationalized by job title, and burnout across different occupations in support services in a large municipal school district? and (b) To what extent do individual differences in coping methods moderate this relationship? ^ This study was a cross-sectional study of county public school bus drivers, bus aides, mechanics, and clerical workers (N = 253) at three bus depot locations within the same district using validated survey instruments for data collection. Hypotheses were tested using simultaneous regression analyses. ^ Findings indicated that there were statistically significant and relevant relationships among the variables of interest; job demands, job control, burnout, and ways of coping. There was a relationship between job title and physical job demands. There was no evidence to support a relationship between job title and psychological demands. Furthermore, there was a relationship between physical demands, emotional exhaustion and personal accomplishment; key indicators of burnout. ^ Results showed significant correlations between individual ways of coping as a moderator between job structure, operationalized by job title, and individual employee burnout adding empirical evidence to the occupational stress literature. Based on the findings, there are implications for theory, research, and practice. For theory and research, the findings suggest the importance of incorporating transactional models in the study of occupational stress. In the area of practice, the findings highlight the importance of enriching jobs, increasing job control, and providing individual-level training related to stress reduction.^
Resumo:
Understanding the relationships between hydrology and salinity and plant community structure and production is critical to allow predictions of wetland responses to altered water management, changing precipitation patterns and rising sea-level. We addressed how salinity, water depth, hydroperiod, canal inflows, and local precipitation control marsh macrophyte aboveground net primary production (ANPP) and structure in the coastal ecotone of the southern Everglades. We contrasted responses in two watersheds - Taylor Slough (TS) and C-111 - systems that have and will continue to experience changes in water management. Based on long-term trajectories in plant responses, we found continued evidence of increasing water levels and length of inundation in the C-111 watershed south of the C-111 canal. We also found strong differentiation among sites in upper TS that was dependent on hydrology. Finally, salinity, local precipitation and freshwater discharge from upstream explained over 80 % of the variance in Cladium ANPP at a brackish water site in TS. Moreover, our study showed that, while highly managed, the TS and C-111 watersheds maintain legacies in spatial pattern that would facilitate hydrologic restoration. Based on the trajectories in Cladium and Eleocharis, shifts in plant community structure could occur within 5–10 years of sustained water management change.
Resumo:
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.
Resumo:
Globally, small-scale fisheries (SSFs) are driven by climate, governance, and market factors of social-ecological change, presenting both challenges and opportunities. The ability of small-scale fishermen and buyers to adapt to changing conditions allows participants to survive economic or environmental disturbances and to benefit from optimal conditions. This study presented here identifies key large-scale factors that drive SSFs in California to shift focus among targets and that dictate long-term trends in landings. We use Elinor Ostrom’s Social-Ecological System (SES) framework to apply an interdisciplinary approach when identifying potential factors and when understanding the complex dynamics of these fisheries. We analyzed the interactions among Monterey Bay SSFs over the past four decades since the passage of the Magnuson Stevens Fisheries Conservation and Management Act of 1976. In this region, the Pacific sardine (Sardinops sagax), northern anchovy (Engraulis mordax), and market squid (Loligo opalescens) fisheries comprise a tightly linked system where shifting focus among fisheries is a key element to adaptive capacity and reduced social and ecological vulnerability. Using a cluster analysis of landings, we identified four modes from 1974 to 2012 that were dominated by squid, sardine, anchovy, or lacked any dominance, enabling us to identify external drivers attributed to a change in fishery dominance during seven distinct transition points. Overall, we show that market and climate factors drive the transitions among dominance modes. Governance phases most dictated long-term trends in landings and are best viewed as a response to changes in perceived biomass and thus a proxy for biomass. Our findings suggest that globally, small-scale fishery managers should consider enabling shifts in effort among fisheries and retaining existing flexibility, as adaptive capacity is a critical determinant for social and ecological resilience.