9 resultados para double sex and Mab-3 related transcription factor
em Digital Commons at Florida International University
Resumo:
A report from the National Institutes of Health defines a disease biomarker as a “characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.” Early diagnosis is a crucial factor for incurable disease such as cancer and Alzheimer’s disease (AD). During the last decade researchers have discovered that biochemical changes caused by a disease can be detected considerably earlier as compared to physical manifestations/symptoms. In this dissertation electrochemical detection was utilized as the detection strategy as it offers high sensitivity/specificity, ease of operation, and capability of miniaturization and multiplexed detection. Electrochemical detection of biological analytes is an established field, and has matured at a rapid pace during the last 50 years and adapted itself to advances in micro/nanofabrication procedures. Carbon fiber microelectrodes were utilized as the platform sensor due to their high signal to noise ratio, ease and low-cost of fabrication, biocompatibility, and active carbon surface which allows conjugation with biorecognition moieties. This dissertation specifically focuses on the detection of 3 extensively validated biomarkers for cancer and AD. Firstly, vascular endothelial growth factor (VEGF) a cancer biomarker was detected using a one-step, reagentless immunosensing strategy. The immunosensing strategy allowed a rapid and sensitive means of VEGF detection with a detection limit of about 38 pg/mL with a linear dynamic range of 0–100 pg/mL. Direct detection of AD-related biomarker amyloid beta (Aβ) was achieved by exploiting its inherent electroactivity. The quantification of the ratio of Aβ1-40/42 (or Aβ ratio) has been established as a reliable test to diagnose AD through human clinical trials. Triple barrel carbon fiber microelectrodes were used to simultaneously detect Aβ1-40 and Aβ1-42 in cerebrospinal fluid from rats within a detection range of 100nM to 1.2μM and 400nM to 1μM respectively. In addition, the release of DNA damage/repair biomarker 8-hydroxydeoxyguanine (8-OHdG) under the influence of reactive oxidative stress from single lung endothelial cell was monitored using an activated carbon fiber microelectrode. The sensor was used to test the influence of nicotine, which is one of the most biologically active chemicals present in cigarette smoke and smokeless tobacco.
Resumo:
The present study examined the linkage between mental (i.e., anxiety disorders and depression) and drug use disorders in a multi-ethnic (i.e., 25% Euro-American, 38% Hispanic/Latino, 33% African American, 4% other) sample of adults (N = 1638, age 18–93 years old). Risk for drug use disorders was examined, while attending to methodological issues of prior research including (1) psychiatric comorbidity, (2) variations in risk associated with sex, ethnicity, and age, and (3) temporal order between mental and drug use disorders. ^ Participants were assessed using the Composite International Diagnostic Interview (CIDI; World Health Organization, 1990). A life history calendar (Freedman et al., 1988) was used to aid the ordering of onsets of all disorders assessed. ^ Preliminary analysis indicated anxiety disorders and depression were significant predictors of drug use disorders, but after controlling for comorbidity and temporal order, anxiety disorders and depression were no longer predictive of drug use disorders. Findings are discussed in terms of their usefulness for prevention and treatment of drug use disorders. ^
Resumo:
Learning and memory in adult females decline during menopause and estrogen replacement therapy is commonly prescribed during menopause. Post-menopausal women tend to suffer from depression and are prescribed antidepressants – in addition to hormone therapy. Estrogen replacement therapy is a topic that engenders debate since several studies contradict its efficacy as a palliative therapy for cognitive decline and neurodegenerative diseases. Signaling transduction pathways can alter brain cell activity, survival, and morphology by facilitating transcription factor DNA binding and protein production. The steroidal hormone estrogen and the anti-depressant drug lithium interact through these signaling transduction pathways facilitating transcription factor activation. The paucity of data on how combined hormones and antidepressants interact in regulating gene expression led me to hypothesize that in primary mixed brain cell cultures, combined 17β-estradiol (E2) and lithium chloride (LiCl) (E2/LiCl) will alter genetic expression of markers involved in synaptic plasticity and neuroprotection. Results from these studies indicated that a 48 h treatment of E2/LiCl reduced glutamate receptor subunit genetic expression, but increased neurotrophic factor and estrogen receptor genetic expression. Combined treatment also failed to protect brain cell cultures from glutamate excitotoxicity. If lithium facilitates protein signaling pathways mediated by estrogen, can lithium alone serve as a palliative treatment for post-menopause? This question led me to hypothesize that in estrogen-deficient mice, lithium alone will increase episodic memory (tested via object recognition), and enhance expression in the brain of factors involved in anti-apoptosis, learning and memory. I used bilaterally ovariectomized (bOVX) C57BL/6J mice treated with LiCl for one month. Results indicated that LiCl-treated bOVX mice increased performance in object recognition compared with non-treated bOVX. Increased performance in LiCl-treated bOVX mice coincided with augmented genetic and protein expression in the brain. Understanding the molecular pathways of estrogen will assist in identifying a palliative therapy for menopause-related dementia, and lithium may serve this purpose by acting as a selective estrogen-mediated signaling modulator.
Resumo:
Wnt signaling plays a vital role in many developmental processes. Wnt signaling has been implicated in neural crest induction and cell differentiation among other functions. In mice Wnts comprise a family of nineteen glycoproteins that bind to Frizzled (Fzd) receptors and LRP5/6 co-receptors. This activates beta-catenin, which translocates into the nucleus and acts as a transcription factor, resulting in differential gene expression. Specifically, Fzd 3 enhances Wnt 1 signaling. Wnt 1 and Fzd 3 are involved in neural crest induction and in neural crest-derived melanocyte development. We analyzed the expression pattern ofFzd 3 and the LRP 5/6 by in situ hybridization inmouse embryos. Our data suggests a role for these genes in neural crest induction and in melanocyte differentiation in the murine system. Results show Fzd 3 expression in the anterior part of the neural tube and in the hindbrain, while LRP 5 is expressed in the anterior part of the neural tube, in the hindbrain, and in the eye. We conclude that Fzd 3 and LRP 5 are expressed in the neural crest. In addition, Fzd 3 might act as the receptor while LRP 5 might act as the co-receptor for Wntl signaling in the murine system.
Resumo:
Rates of HIV infection continue to climb among minority populations and men who have sex with men (MSM), with African American/Black MSM being especially impacted. Numerous studies have found HIV transmission risk to be associated with many health and social disparities resulting from larger environmental and structural forces. Using anthropological and social environment-based theories of resilience that focus on individual agency and larger social and environmental structures, this dissertation employed a mixed methods design to investigate resilience processes among African American/Black MSM.^ Quantitative analyses compared African American/Black (N=108) and Caucasian/White (N=250) MSM who participated in a previously conducted randomized controlled trial (RCT) of sexual and substance use risk reduction interventions. At RCT study entry, using past 90 day recall periods, there were no differences in unprotected sex frequency, however African American/Black MSM reported higher frequencies of days high (P<0.000), and drugs and sex used in combination (P<0.000), and substance dependence (P<0.000) and lower levels of social support (P<0.024) compared to Caucasian/White MSM. At 12- month follow-up, multi-level statistical models found that African American/Black MSM reduced their frequencies of days high and unprotected sex at greater rates than Caucasian/White MSM (P<0.001).^ Qualitative data collected among a sub-sample of African American/Black MSM from the RCT (N=21) described the men's experiences of living with multiple health and social disparities and the importance of RCT study assessments in facilitating reductions in risk behaviors. A cross-case analysis showed different resilience processes undertaken by men who experienced low socioeconomic status, little family support, and homophobia (N=16) compared to those who did not (N=5).^ The dissertation concludes that resilience processes to HIV transmission risk and related health and social disparities among African American/Black MSM varies and are dependent on specific social environmental factors, including social relationships, structural homophobia, and access to social, economic, and cultural capital. Men define for themselves what it means to be resilient within their social environment. These conclusions suggest that both individual and structural-level resilience-based HIV prevention interventions are needed.^
Resumo:
Melanocytes, pigment-producing cells, derive from the neural crest (NC), a population of pluripotent cells that arise from the dorsal aspect of the neural tube during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The deletion of the transcription factor Ets1 in mice results in hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The goal of the present study was to establish the temporal requirement and role of Ets1 in murine melanocyte development. In the mouse, Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick cranial NC, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of melanocytes, enteric ganglia, and other NC derivatives. ^ Using a combination of immunofluorescence and cell survival assays Ets1 was found to be required between embryonic days 10 and 11, when it regulates NC cell and melanocyte precursor (melanoblast) survival. Given the requirement of Ets1 for Sox10 expression in the chick cranial NC, a potential interaction between these genes was investigated. Using genetic crosses, a synergistic genetic interaction between Ets1 and Sox10 in melanocyte development was found. Since Sox10 is essential for enteric ganglia formation, the importance of Ets1 on gut innervation was also examined. In mice, Ets1 deletion led to decreased gut innervation, which was exacerbated by Sox10 heterozygosity. ^ At the molecular level, Ets1 was found to activate a Sox10 enhancer critical for Sox10 expression in melanoblasts. Furthermore, mutating Ets1 at a site I characterized in the spontaneous variable spotting mouse pigmentation mutant, led to a 2-fold decrease in enhancer activation. Overexpression and knockdown of Ets1 did not affect Sox10 expression; nonetheless, Ets1 knockdown led to a 6-fold upregulation of the transcription factor Sox9, a gene required for melanocyte and chondrocyte development, but which impairs melanocyte development when its expression is prolonged. Together, these results suggest that Ets1 is required early during melanocyte development for NC cell and melanoblast survival, possibly acting upstream of Sox10. The transcription factor Ets1 may also act indirectly in melanocyte fate specification by repressing Sox9 expression, and consequently cartilage fate.^
Resumo:
Learning and memory in adult females decline during menopause and estrogen replacement therapy is commonly prescribed during menopause. Post-menopausal women tend to suffer from depression and are prescribed antidepressants – in addition to hormone therapy. Estrogen replacement therapy is a topic that engenders debate since several studies contradict its efficacy as a palliative therapy for cognitive decline and neurodegenerative diseases. Signaling transduction pathways can alter brain cell activity, survival, and morphology by facilitating transcription factor DNA binding and protein production. The steroidal hormone estrogen and the anti-depressant drug lithium interact through these signaling transduction pathways facilitating transcription factor activation. The paucity of data on how combined hormones and antidepressants interact in regulating gene expression led me to hypothesize that in primary mixed brain cell cultures, combined 17beta-estradiol (E2) and lithium chloride (LiCl) (E2/LiCl) will alter genetic expression of markers involved in synaptic plasticity and neuroprotection. Results from these studies indicated that a 48 h treatment of E2/LiCl reduced glutamate receptor subunit genetic expression, but increased neurotrophic factor and estrogen receptor genetic expression. Combined treatment also failed to protect brain cell cultures from glutamate excitotoxicity. If lithium facilitates protein signaling pathways mediated by estrogen, can lithium alone serve as a palliative treatment for post-menopause? This question led me to hypothesize that in estrogen-deficient mice, lithium alone will increase episodic memory (tested via object recognition), and enhance expression in the brain of factors involved in anti-apoptosis, learning and memory. I used bilaterally ovariectomized (bOVX) C57BL/6J mice treated with LiCl for one month. Results indicated that LiCl-treated bOVX mice increased performance in object recognition compared with non-treated bOVX. Increased performance in LiCl-treated bOVX mice coincided with augmented genetic and protein expression in the brain. Understanding the molecular pathways of estrogen will assist in identifying a palliative therapy for menopause-related dementia, and lithium may serve this purpose by acting as a selective estrogen-mediated signaling modulator.
Resumo:
Rates of HIV infection continue to climb among minority populations and men who have sex with men (MSM), with African American/Black MSM being especially impacted. Numerous studies have found HIV transmission risk to be associated with many health and social disparities resulting from larger environmental and structural forces. Using anthropological and social environment-based theories of resilience that focus on individual agency and larger social and environmental structures, this dissertation employed a mixed methods design to investigate resilience processes among African American/Black MSM. Quantitative analyses compared African American/Black (N=108) and Caucasian/White (N=250) MSM who participated in a previously conducted randomized controlled trial (RCT) of sexual and substance use risk reduction interventions. At RCT study entry, using past 90 day recall periods, there were no differences in unprotected sex frequency, however African American/Black MSM reported higher frequencies of days high (P Qualitative data collected among a sub-sample of African American/Black MSM from the RCT (N=21) described the men’s experiences of living with multiple health and social disparities and the importance of RCT study assessments in facilitating reductions in risk behaviors. A cross-case analysis showed different resilience processes undertaken by men who experienced low socioeconomic status, little family support, and homophobia (N=16) compared to those who did not (N=5). The dissertation concludes that resilience processes to HIV transmission risk and related health and social disparities among African American/Black MSM varies and are dependent on specific social environmental factors, including social relationships, structural homophobia, and access to social, economic, and cultural capital. Men define for themselves what it means to be resilient within their social environment. These conclusions suggest that both individual and structural-level resilience-based HIV prevention interventions are needed.
Resumo:
Melanocytes, pigment-producing cells, derive from the neural crest (NC), a population of pluripotent cells that arise from the dorsal aspect of the neural tube during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The deletion of the transcription factor Ets1 in mice results in hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The goal of the present study was to establish the temporal requirement and role of Ets1 in murine melanocyte development. In the mouse, Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick cranial NC, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of melanocytes, enteric ganglia, and other NC derivatives. Using a combination of immunofluorescence and cell survival assays Ets1 was found to be required between embryonic days 10 and 11, when it regulates NC cell and melanocyte precursor (melanoblast) survival. Given the requirement of Ets1 for Sox10 expression in the chick cranial NC, a potential interaction between these genes was investigated. Using genetic crosses, a synergistic genetic interaction between Ets1 and Sox10 in melanocyte development was found. Since Sox10 is essential for enteric ganglia formation, the importance of Ets1 on gut innervation was also examined. In mice, Ets1 deletion led to decreased gut innervation, which was exacerbated by Sox10 heterozygosity. At the molecular level, Ets1 was found to activate a Sox10 enhancer critical for Sox10 expression in melanoblasts. Furthermore, mutating Ets1 at a site I characterized in the spontaneous variable spotting mouse pigmentation mutant, led to a 2-fold decrease in enhancer activation. Overexpression and knockdown of Ets1 did not affect Sox10 expression; nonetheless, Ets1 knockdown led to a 6-fold upregulation of the transcription factor Sox9, a gene required for melanocyte and chondrocyte development, but which impairs melanocyte development when its expression is prolonged. Together, these results suggest that Ets1 is required early during melanocyte development for NC cell and melanoblast survival, possibly acting upstream of Sox10. The transcription factor Ets1 may also act indirectly in melanocyte fate specification by repressing Sox9 expression, and consequently cartilage fate.